ZHANG Yunkai,HUA Wei,LIU Yurun,et al.Analysis on Temporal and Spatial Characteristics of Network Attention of Weather Forecast based on Baidu Index[J].Journal of Chengdu University of Information Technology,2022,37(05):601-607.[doi:10.16836/j.cnki.jcuit.2022.05.017]
基于百度指数的天气预报关注度时空特征研究
- Title:
- Analysis on Temporal and Spatial Characteristics of Network Attention of Weather Forecast based on Baidu Index
- 文章编号:
- 2096-1618(2022)05-0601-07
- Keywords:
- meteorology; meteorological data; Baidu index; weather forecast; network attention; temporal and spatial characteristics
- 分类号:
- P49
- 文献标志码:
- A
- 摘要:
- 目前关于网络关注度相关研究主要集中于经济社会领域,而对天气预报网络关注度的分析还较少涉及。为探究天气预报网络关注度的时空变化特征,利用百度搜索指数和经济社会统计数据,采用变异系数、基尼系数和相关分析等统计方法对中国天气预报网络关注度的时空特征及影响因素进行分析。结果表明,2011-2019年,中国天气预报网络关注度总体呈上升趋势,且关注度多在春季和秋末较高,而冬末和初秋较低; 天气预报网络关注度的周内变化不明显,但主要节假日期间则表现出假日前较高,假期中较低的趋势。天气预报网络关注度也存在明显的区域差异,总体上中、东部经济发达地区关注度较高,而西部地区较低; 与此同时,省际间和“东—中—西”三大区域间的差异同样明显,但基尼系数总体呈现下降趋势,而“东—中—西”三大区域内天气预报网络关注度也存在明显的区域差异,西部地区的内部差异远大于东、中部地区,而东部地区内部差异最小。天气预报网络关注度的空间差异与区域经济发展水平、居民收入水平高低和自然灾害等多种因素有关,尤其受不同省份生产总值和城镇居民人均可支配收入影响最为显著,此外也与自然灾害损失存在一定联系,但相关关系相对较弱。
- Abstract:
- Currently, the research on network attention is mainly focused on the economic and social field, while the analysis of weather forecast network attention is seldom involved. In order to explore the spatio-temporal variation characteristics of network attention of weather forecast, on the basis of Baidu search index and economic and social statistical data, the spatial and temporal characteristics of network attention of weather forecast and its influencing factors were analyzed by using the coefficient of variation, Gini coefficient and correlation analysis methods. The results show that the network attention of weather forecast shows an overall upward trend during 2011 to 2019, and is mostly high in spring and late autumn, while low in late winter and early autumn. The weekly variation of the network attention is not obvious and the network attention is high before the holidays and low during the holidays for the major holiday. There are also obvious regional differences in the network attention of weather forecast. Generally speaking, the network attention of weather forecast in central and eastern China is high, while it is low in western China. The differences among each province and the “east-central-west” regions are very obvious, but the Gini coefficient showed an overall downward trend, and the “east-central-west” regions also shows the obvious internal differences, and the internal differences is largest in western China, central China is second, and the eastern China is minimal. The spatial difference of network attention of weather forecast is caused by regional economic development level, residents’ income level and natural disasters. Furthermore, the network attention of weather forecast is mainly influenced by the GDP of different provinces and the per capita disposable income of urban residents. Moreover, although the network attention of weather forecast is also affected by natural disaster losses, but the impact is relatively small.
参考文献/References:
[1] 丁鑫,汪京强,李勇泉.基于百度指数的旅游目的地网络关注度时空特征与影响因素研究:以厦门市为例[J].资源开发与市场,2018,34(5):709-714.
[2] 涂志芳,刘兹恒.从网络搜索看中国“图书馆”的社会关注及趋势:以百度指数为例[J].图书馆,2016(4):51-56.
[3] 张继德,廖微,张荣武.普通投资者关注对股市交易的量价影响:基于百度指数的实证研究[J].会计研究,2014(8):52-59.
[4] 熊丽芳,甄峰,王波,等.基于百度指数的长三角核心区城市网络特征研究[J].经济地理,2013,33(7):67-73.
[5] 吴湘华,吕柔,王亚丽,等.基于用户关注度的百度指数在学术期刊网络影响力评价中的应用研究[J].出版发行研究,2018(12):56-62.
[6] 刘璐,王一然,于言,等.蓬莱气候舒适度与旅客网络关注度相关研究[J].西南师范大学学报(自然科学版),2018,43(5):57-63.
[7] 马丽君,孙根年,杨睿,等.城市气候舒适度与游客网络关注度时空相关分析[J].地理科学进展,2011,30(6):753-759.
[8] 张春慧,洪晓.三大古城网络关注度时空分布及其影响因素研究[J].资源开发与市场,2018,34(5):703-708.
[9] 谢慷,沈雪峰,李伟.省政府“气象灾害防御”网调结果分析及相关思考[J].浙江气象,2009,30(4):28-33.
[10] 周威,陈朝晖,李仁鹏,等.基于网络关注度的天气与旅游相关性分析:以长沙为例[J].气象科技,2020(4):07-614.
[11] 国家统计局.中国统计年鉴[M].北京:中国统计出版社,2012~2020.
[12] 安文,徐飞雄,彭建,等.电视剧热播对其外景地网络关注度的空间影响:以德天瀑布为例[J].内江师范学院学报,2019,34(8):80-86.
[13] 王玉珍,王李浩.治理现代化背景下社会组织省域发展差异分析[J].中国行政管理,2016,10:45-50.
[14] 郭冠华,王荣成,王昱,等.东北5A级景区网络关注度区域差异研究[J].科学与经济,2018,31(4):61-65.
[15] 刘嘉毅,陈玲,陈玉萍.旅游舆情网络关注度时空演变特征与影响因素[J].地域研究与开发,2019,38(1):1994-2019.
[16] 何云飞,黄莉.医改10年中国西部农村卫生资源配置状况分析[J].医学与社会,2021,34(2):31-35.
[17] 陈斐,马梦蝶.中国与主要拉美国家经济高质量发展的比较研究[J].新疆财经,2021(1):5-16.
[18] 周文福.公共体育服务在提升城镇化质量中的作用及实现策略[J].吉林体育学院学报,2020,36(2):1-7.
[19] 舒丽,张凯,王小秋,等.基于百度指数的中国体育旅游网络关注度研究[J].北京体育大学学报,2020,43(6):110-122.
[20] 何小芊,刘宇,吴发明.基于百度指数的温泉旅游网络关注度时空特征研究[J].地域研究与开发,2017,36(1):103-108.
相似文献/References:
[1]廖洪涛,肖天贵,魏 微,等.东亚梅雨季低频波波包传播特征[J].成都信息工程大学学报,2019,(02):143.[doi:10.16836/j.cnki.jcuit.2019.02.008]
LIAO Hongtao,XIAO Tiangui,WEI Wei,et al.Low Frequency Wave Packet Propagation
Characteristics in East Asian Meiyu Season[J].Journal of Chengdu University of Information Technology,2019,(05):143.[doi:10.16836/j.cnki.jcuit.2019.02.008]
[2]王雨歌,郑佳锋,朱克云,等.一次西南涡过程的云-降水毫米波云雷达回波特征分析[J].成都信息工程大学学报,2019,(02):172.[doi:10.16836/j.cnki.jcuit.2019.02.011]
WANG Yuge,ZHENG Jiafeng,ZHU Keyun,et al.Analysis of Cloud-Precipitation Echo Characteristics of a Southwest Vortex[J].Journal of Chengdu University of Information Technology,2019,(05):172.[doi:10.16836/j.cnki.jcuit.2019.02.011]
[3]青 泉,罗 辉,陈刚毅.基于L波段秒级探空数据V-3θ图形的四川盆地暴雨预报模型研究[J].成都信息工程大学学报,2019,(02):186.[doi:10.16836/j.cnki.jcuit.2019.02.013]
QING Quan,LUO Hui,CHEN Gangyi.Forecasting Model of Torrential Rain in Sichuan Basin based on V-3θ
Structural Graphs of L-Band Second Level Sounding Data[J].Journal of Chengdu University of Information Technology,2019,(05):186.[doi:10.16836/j.cnki.jcuit.2019.02.013]
[4]吴秋月,华 维,申 辉,等.基于湿位涡与螺旋度的一次西南低涡强降水分析[J].成都信息工程大学学报,2019,(01):63.[doi:10.16836/j.cnki.jcuit.2019.01.013]
WU Qiuyue,HUA Wei,SHEN Hui,et al.Diagnostic Analysis of a Southwest Vortex Rainstormbased on Moist Potential Vorticity and Helicity[J].Journal of Chengdu University of Information Technology,2019,(05):63.[doi:10.16836/j.cnki.jcuit.2019.01.013]
[5]李潇濛,赵琳娜,肖天贵,等.2000-2015年青藏高原切变线统计特征分析[J].成都信息工程大学学报,2018,(01):91.[doi:10.16836/j.cnki.jcuit.2018.01.016]
LI Xiao-meng,ZHAO Lin-na,XIAO Tian-gui,et al.Statistical Characteristics Analysis of the Shear Linein the Qinghai-Tibet Plateau from 2000 to 2015[J].Journal of Chengdu University of Information Technology,2018,(05):91.[doi:10.16836/j.cnki.jcuit.2018.01.016]
[6]喻乙耽,马振峰,范广洲.华西秋雨气候特征分析[J].成都信息工程大学学报,2018,(02):164.[doi:10.16836/j.cnki.jcuit.2018.02.011]
YU Yi-dan,MA Zhen-feng,FAN Guang-zhou.The Analysis of Climatic Feature of Autumn Rainfall in West China[J].Journal of Chengdu University of Information Technology,2018,(05):164.[doi:10.16836/j.cnki.jcuit.2018.02.011]
[7]孙康慧,巩远发.20世纪70年代末云南省雨季降水的突变及原因分析[J].成都信息工程大学学报,2018,(02):177.[doi:10.16836/j.cnki.jcuit.2018.02.012]
SUN Kang-hui,GONG Yuan-fa.Abrupt Change of Precipitation in Rainy Season in YunnanProvince in Late 1970s and its Cause Analysis[J].Journal of Chengdu University of Information Technology,2018,(05):177.[doi:10.16836/j.cnki.jcuit.2018.02.012]
[8]吴树炎,顾建峰,刘海文,等.高原冬季雪深与重庆夏季降水的年际关系研究[J].成都信息工程大学学报,2018,(02):184.[doi:10.16836/j.cnki.jcuit.2018.02.013]
WU Shu-yan,GU Jian-feng,LIU Hai-wen,et al.Interannual Relationship between Winter Snow Depth over TibetanPlateau and Summer Precipitation over Chongqing[J].Journal of Chengdu University of Information Technology,2018,(05):184.[doi:10.16836/j.cnki.jcuit.2018.02.013]
[9]魏 凡,李 超.利用气象雷达信息划设雷暴飞行限制区的方法研究[J].成都信息工程大学学报,2018,(02):205.[doi:10.16836/j.cnki.jcuit.2018.02.016]
WEI Fan,LI Chao.Study on the Method of Setting Up Limited Flying area ofThunderstorm by Using Weather Radar Information[J].Journal of Chengdu University of Information Technology,2018,(05):205.[doi:10.16836/j.cnki.jcuit.2018.02.016]
[10]朱 莉,张腾飞,李华宏,等.云南一次短时强降水过程的中尺度特征及成因分析[J].成都信息工程大学学报,2018,(03):335.[doi:10.16836/j.cnki.jcuit.2018.03.017]
ZHU Li,ZHANG Teng-fei,LI Hua-hong,et al.Analysis on Meso-scale Features and Forming Reasons of a Short TimeIntensive Precipitation Case in Yunnan Province[J].Journal of Chengdu University of Information Technology,2018,(05):335.[doi:10.16836/j.cnki.jcuit.2018.03.017]
备注/Memo
收稿日期:2022-09-01
基金项目:国家自然科学基金资助项目(41775072,42075019); 四川省杰出青年科技人才计划资助项目(2019JDJQ0001)