HU Shibing,NIE Xi,CHEN Ziwei.The Design of FIR Digital Filters Using Type-Ⅱ Frequency Sampling Method based on Modified Differential Evolution Algorithm[J].Journal of Chengdu University of Information Technology,2022,37(06):627-634.[doi:10.16836/j.cnki.jcuit.2022.06.003]
基于改进差分进化算法的Ⅱ型频率采样法FIR数字滤波器设计
- Title:
- The Design of FIR Digital Filters Using Type-Ⅱ Frequency Sampling Method based on Modified Differential Evolution Algorithm
- 文章编号:
- 2096-1618(2022)06-0627-08
- Keywords:
- FIR digital filters; type-Ⅱ frequency sampling method; modified differential evolution algorithm; minimum stopband attenuation; fitness function; optimal design
- 分类号:
- TN713+.7
- 文献标志码:
- A
- 摘要:
- 在传统差分进化算法的基础上,增加缩放因子自适应生成策略、交叉概率抛物线式动态产生策略和新个体基因边界检查和处理方法,提出一种改进差分进化算法并应用于采用Ⅱ型频率采样法的FIR数字滤波器设计中。该优化设计方法以滤波器过渡带样点值为优化变量,以阻带最小衰减值作为优化目标并设计适应度函数,利用改进差分进化算法的全局寻优能力求解最优样点值。文中结合FIR数字高通、低通和带通滤波器设计的3个例子,给出算法实现的具体步骤和实验结果。实验数据表明:采用改进差分进化算法确定的滤波器过渡带样点值是最优的,设计的FIR数字滤波器频响特性(通带最大波动和阻带最小衰减)优于传统查表方法和遗传算法。
- Abstract:
- On the basis of the traditional differential evolution(TDE)algorithm, an adaptive generation strategy for the scalar factor, a parabolic dynamic generation strategy for the crossover probability and a method for checking and processing the boundary of the new individual’s genes are added into the TDE algorithm. A modified differential evolution(MDE)algorithm is proposed accordingly and applied to the design of FIR digital filters using type-Ⅱ frequency sampling method. The sample values of the filters in the transition bands are taken as the optimization variables; the minimum stopband attenuation is used as the optimization objective to design the corresponding fitness function; the global excellent searching ability of the MDE algorithm are employed to solve the best sample values by this optimal design method. Three examples of the design of digital FIR based on high-pass, low-pass and band-pass filters are given in this paper, and the detailed procedures and experimental results of the implementation of the algorithm are also presented. The experimental data have shown that the sample values of the filters in the transition bands determined by the MDE algorithm are optimal, and the frequency response characteristics(maximum passband ripple and minimum stopband attenuation)of the FIR digital filters designed are superior to the traditional look-up table method and genetic algorithm.
参考文献/References:
[1] 高西全,丁玉美.数字信号处理[M].4版.西安:西安电子科技大学出版社,2016.
[2] 杨会成.数字信号处理[M].北京:国防工业出版社,2012.
[3] Lawrence R.Rabiner,Bernard Gold,et al.An Approach to the Approximation Problem for Nonrecursive Digital Filters[J].IEEE Transactions on Audio and Electroacoustics,1970,18(2):83-106.
[4] Ervin Szopos, Marius Neag, Ioana Saracut, et al.Synthesis Tool Based on Genetic Algorithm for FIR Filters with User-Defined Magnitude Characteristics[J]. Circuits, Systems & Signal Processing, 2016, 35(1):253-279.
[5] Kamal Boudjelaba, Frédéric Ros, Djamel Chikouche. Potential of Particle Swarm Optimization and Genetic Algorithms for FIR Filter Design[J]. Circuits, Systems & Signal Processing, 2014, 33(10): 3195-3222.
[6] 陈小平,于盛林.遗传算法在FIR滤波器设计——频率抽样法中的应用[J].电子学报,2000,28(10):118-120.
[7] 芦成刚.基于遗传算法的FIR滤波器优化设计[D].延边:延边大学,2006.
[8] 程玲.模拟退火算法在分裂系构造中的应用[D].上海:上海交通大学,2010.
[9] 刘婷婷.蚁群优化算法改进及应用研究[D].通辽:内蒙古民族大学,2020.
[10] 陈晓文.基于粒子群算法的FIR滤波器的优化设计[J].宁德师范学院学报(自然科学版),2019,31(3):257-262.
[11] 李辉,张安,赵敏,等.粒子群优化算法在FIR数字滤波器设计中的应用[J].电子学报,2005,33(7):1338-1341.
[12] Pavani Uday Kumar,Kaladhara Sarma G R C,Mohan Das S,et al.Design of Optimal Digital FIR Filter Using Particle Swarm Optimization Algorithm[J].Advances in Computational Science,Engineering and Information Technology,2013,225:187-196.
[13] 高建峰.免疫算法及其在数字滤波器设计中的应用[D].苏州:苏州大学,2005.
[14] 王琼,全书海,徐化伟,等.基于克隆选择算法的FIR滤波器的设计[J].武汉理工大学学报,2007,29(8):125-127.
[15] Berna Haktanirlar Ulutas, Sadan Kulturel-Konak. A review of clonal selection algorithm and its applications[J]. Artificial Intelligence Review, 2011, 36(2): 117-138.
[16] 任伟.自由搜索算法在数字滤波器优化设计中的应用研究[D].湘潭:湘潭大学,2014.
[17] Hadi Eskandar,Ali Sadollah,Ardeshir Bahreininejad,et al.Water cycle algorithm–A novel metaheuristic optimization method for solving constrained engineering optimization problems[J].Computers & Structures,2012,110-111:151-166.
[18] 何迎盛.人工鱼群智能优化算法的改进与应用研究[D].南昌:江西理工大学,2015.
[19] Rainer Storn,Kenneth Price.Differential Evolution-A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces[J].Journal of Global Optimization,1997,11(4):341-359.
[20] Rainer M Storn, Kenneth V Price,Jouni A Lampinen. Differential Evolution: A Practical Approach to Global Optimization [M]. Springer International Publishing, Berlin,2005.
[21] 糜培培.基于云计算的改进差分进化算法的研究与实现[D].成都:电子科技大学,2018.
[22] 贺超英.MATLAB应用与实验教程[M].4版.北京:电子工业出版社,2021.
备注/Memo
收稿日期:2022-03-10