PDF下载 分享
[1]杨 梅,罗 建,张晓倩,等.基于改进U-Net的新冠肺炎图像分割方法[J].成都信息工程大学学报,2023,38(01):44-48.[doi:10.16836/j.cnki.jcuit.2023.01.007]
 YANG Mei,LUO Jian,ZHANG Xiaoqian,et al.A Novel Coronary Pneumonia Image Segmentation Method based on Improved U-Net[J].Journal of Chengdu University of Information Technology,2023,38(01):44-48.[doi:10.16836/j.cnki.jcuit.2023.01.007]
点击复制

基于改进U-Net的新冠肺炎图像分割方法

参考文献/References:

[1] Rt A.Pandemic potential of 2019-nCoV[J].The Lancet Infectious Diseases,2020,20(3):280-280.
[2] 李士雪,单莹.新型冠状病毒肺炎研究进展述评[J].山东大学学报(医学版),2020,58(3):19-25.
[3] 宋瑶,刘俊.改进U-Net的新冠肺炎图像分割方法[J].计算机工程与应用,2021,57(19):243-251.
[4] Razavian A S,Azizpour H,Sullivan J,et al.CNN Features off-the-shelf: an Astounding Baseline for Recognition[C].2014 IEEE conference on computer vision and pattern recognition workshops.IEEE,2014:512-519.
[5] Long J,Shelhamer E,Darrell T.Fully Convolutional Networks for Semantic Segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,39(4):640-651.
[6] Ronneberger O,Fischer P,Brox T.U-net: Convolutional networks for biomedical image segmentation[C].International Conference on Medical image computing and computer-assisted intervention.Springer,Cham,2015:234-241.
[7] Rajamani K T,Siebert H,Heinrich M P.Dynamic deformable attention network(DDANet)for COVID-19 lesions semantic segmentation[J].Journal of Biomedical Informatics,2021:103816.
[8] Zhao X,Zhang P,Song F,et al.D2a u-net: Automatic segmentation of covid-19 lesions from ct slices with dilated convolution and dual attention mechanism[J].arXiv preprint arXiv,2021(2):05210.
[9] 席佳妮.智能视觉物联网中基于车辆多属性检索的应用研究[D].呼和浩特:内蒙古大学,2021.
[10] Woo S,Park J,Lee J Y,et al.Cbam:Convolutional block attention module[C].Proceedings of the European conference on computer vision(ECCV),2018:3-19.
[11] Morozov S P,Andreychenko A E,Pavlov N A,et al.Mosmeddata:Chest ct scans with covid-19 related findings dataset[J].arXiv preprint arXiv,2020(5):06465.
[12] 付顺兵,王朝斌,罗建,等.基于改进U-Net模型的脑肿瘤MR图像分割[J].西华师范大学学报(自然科学版),2021,42(2):202-208.
[13] 莫春梅,周金治,李雪,等.基于改进U-Net的肝脏分割方法[J].中国医学物理学杂志,2021,38(5):571-577.
[14] 殷晓航,王永才,李德英.基于U-Net结构改进的医学影像分割技术综述[J].软件学报,2021,32(2):519-550.
[15] 李婧.基于深度学习的极化SAR图像去噪与分类研究[D].阜新:辽宁工程技术大学,2021.
[16] Xie E,Wang W,Yu Z,et al.SegFormer:Simple and efficient design for semantic segmentation with transformers[J].Advances in Neural Information Processing Systems,2021,34:12077-12090.

备注/Memo

收稿日期:2022-04-27
基金项目:四川省教育厅重点资助项目(14ZA0123)

更新日期/Last Update: 2023-02-28