HUANG Weijian,YANG Bifeng,LU Huiguo,et al.Research on Meteorological Data Quality Control Method based on BP Neural Network[J].Journal of Chengdu University of Information Technology,2023,38(04):392-397.[doi:10.16836/j.cnki.jcuit.2023.04.003]
基于BP神经网络气象数据质量控制方法研究
- Title:
- Research on Meteorological Data Quality Control Method based on BP Neural Network
- 文章编号:
- 2096-1618(2023)04-0392-06
- Keywords:
- quality control; consistency check; BP neural network
- 分类号:
- P468.0
- 文献标志码:
- A
- 摘要:
- 气象观测数据的准确与否与天气、气候等预报的准确性有直接联系。气象观测数据质量控制主要是为了确保数据能具有代表性、准确性和比较性。对中国传统的质量控制算法做综述, 提出存在的一些问题。在传统质量控制算法基础上, 提出基于BP神经网络一致性检查的新质量控制算法, 对气象观测数据实现了更精确的质量控制。
- Abstract:
- The accuracy of meteorological observation data is directly related to the accuracy of weather and climate prediction. Meteorological observation data quality control is mainly to ensure that the data can be representative, accurate and comparative. This paper summarizes the traditional quality control algorithms in China and summarizes some existing problems. Based on the traditional quality control algorithm, a new quality control algorithm based on BP neural network consistency check is proposed, which realizes more accurate quality control of meteorological observation data on the basis of the traditional quality control.
参考文献/References:
[1] 刘晓梅.地面自动站资料三维变分同化方法研究[D].南京:南京信息工程大学, 2009.
[2] 李娟.基于数据挖掘的气象观测数据质量控制算法研究[D].南京:南京信息工程大学, 2015.
[3] 范宏飞.自动气象站资料质量控制系统设计[J].吉林大学学报(信息科学版), 2021, 39(4):470-478.
[4] 李巍.综合气象观测系统运行监控平台—运行监控子系统的研究与设计[D].北京:北京邮电大学, 2012.
[5] 刘小宁, 鞠晓慧, 范邵华.空间回归检验方法在气象资料质量检验中的应用[J].应用气象学报, 2006(1):37-43.
[6] Lanzante J R.Resistant, robust and non-parametric techniques for the analysis of climate data: Theory and examples, including applications to historical radiosonde station data[J]. Internatinal Journal of Climatology, 1996(16):1197-1226.
[7] 范文波.地面气象观测数据综合质量控制方法研究与实现[D].南京:南京信息工程大学, 2016.
[8] Reshef D N, Reshef Y A, Finucane H K, et al.Detecting novel associations in large datasets[J].Science, 2011, 334(6062):1518-1524.
[9] 孟燕霞. 最大信息系数算法研究[D].太原:太原理工大学, 2019.
[10] 邵长龙, 孙统风, 丁世飞.基于信息熵加权的聚类集成算法[J].南京大学学报(自然科学版), 2021, 57(2):189-196.
[11] 孟燕霞, 郭禹辰, 王莉.一种基于动态均分的最大信息系数改进算法[J].山东大学学报(工学版), 2019, 49(5):105-111.
[12] Yin X R.Canonical correlation analysis based on information theory[J].Journal of Multivariate Analysis, 2004, 91(2):161-176.
[13] 袁开蓉.地面气象要素关系研究及应用[D].西安:西安建筑科技大学, 2020.
[14] Leema N, Nehemiah H K, Kannan A.Neural network classifier optimization using Differential Evolution with Global Information and Back Propagation algorithm for clinical datasets[J]. Applied Soft Computing, 2016, 49:834-844.
[15] 周志华著.机器学习[M].北京:清华大学出版社, 2016.
[16] 中国气象局编.地面气象观测规范[M].北京:气象出版社, 2003.
相似文献/References:
[1]张银量,宣越健,张金强,等.东亚3 个站点臭氧层顶和对流层顶关系研究[J].成都信息工程大学学报,2016,(01):116.
ZHANG Yin-Liang,XUAN Yue-Jian,ZHANG Jin-Qiang,et al.A Study of Relationship between Ozonopause and Tropopause
over Three Sites in the East Asian[J].Journal of Chengdu University of Information Technology,2016,(04):116.
备注/Memo
收稿日期:2022-08-17
基金项目:国家自然科学基金资助项目(42075129)