WANG Xiaolong,TU Yu,QI Zefan,et al.An Interactive Procedural Modeling Method for Pipelines based on Profile Point Projection Algorithm[J].Journal of Chengdu University of Information Technology,2023,38(04):404-409.[doi:10.16836/j.cnki.jcuit.2023.04.005]
基于剖面轮廓点投射算法的管道交互式程序化建模方法
- Title:
- An Interactive Procedural Modeling Method for Pipelines based on Profile Point Projection Algorithm
- 文章编号:
- 2096-1618(2023)04-0404-06
- Keywords:
- spline; profile point position calculation; profile offset curve; spline control node detection; procedural modeling
- 分类号:
- TP312
- 文献标志码:
- A
- 摘要:
- 现代工业管道建筑管网布线复杂精细, 对设备模型曲面的精细化表达有更高的要求。同时, 追求网格模型的精确与高效的开发效率是模型开发人员的迫切愿望, 对工业管道进行精确的图形描述和简化工业管网的工作流水线成为该领域的研究重点。提出一种改进的基于样条的管道剖面轮廓点位置投射计算方法, 从现有的非分割管道网格中提取曲线控制节点, 为用户提供可编辑的初始框架并完成管道网络的拼接。实验结果表明, 该方法可用于工业领域中各类型管道或类似设备模型的仿真建模。构建框架和组件易于编辑, 对非专业用户友好, 具有高效性和高容错率。
- Abstract:
- Modern industrial pipeline building network wiring is complex and fine, so it has higher requirements for the refined representation of equipment model curved surfaces. At the same time, the accurate and efficient development efficiency of mesh models is an urgent desire of model developers, and accurate graphical descriptions of industrial pipelines and simplification of the working pipeline of industrial pipeline networks have become the focus of research in this field.Therefore, an improved spline-based method for projecting the position of pipeline profile points is proposed in this paper, which can extract curve control nodes from existing non-segmented pipeline meshes, thus providing users with an initial editable framework and completing the stitching of pipeline networks.The experimental results show that the method can be used for simulation modeling of various types of pipelines or similar equipment models in the industry. The construction framework and components are easy to edit, friendly to non-expert users, efficient and highly fault-tolerant.
参考文献/References:
[1] Hoffmann C M, Shapiro V.Solid modeling[J].Handbook of Discrete and Computational Geometry, Third Edition, 2017:1503-1539.
[2] Huang C Y, Tai Y K.Ting tools: interactive and procedural modeling of Chinese ting[J].The Visual Computer, 2013, 29(12):1303-1318.
[3] Huang C Y, Sheng Y S, Tai Y K.Interactive and procedural modeling of featured chinese architectures[A].13th International Symposium on Smart Graphics, 2015:16-28.
[4] Kopta D, Ize T, Spjut J, et al.Fast, effective BVH updates for animated scenes[P].Interactive 3D Graphics and Games, 2012:2-3.
[5] Lane J M, Riesenfeld R F, Theoretical Development for the Computer generation and Display of Piecewise Polynomial Surfaces[J].Transactions on Pattern Analysis and Machine Intelligence.IEEE, 1980(1):35-46.
[6] Baker T J.Mesh generation:Art or science?[J].Progress in Aerospace Sciences, 2005, 41(1):29-63.
[7] Catmull E, Clark J.Recursively generated B-spline surfaces on arbitrary topological meshes[J].Computer-aided design, 1978, 10(6):350-355.
[8] Owen S J, Staten M L, Canann S A, et al.Q-Morph: an indirect approach to advancing front quad meshing[J].International journal for numerical methods in engineering, 1999, 44(9):1317-1340.
[9] Cass R J, Benzley S E, Meyers R J, et al.Generalized 3-D paving: an automated quadrilateral surface mesh generation algorithm[J]. International Journal for Numerical Methods in Engineering, 1996, 39(9):1475-1489.
[10] Ims J, Duan Z, Wang Z J.Proceedings of The 22nd AIAA Computational Fluid Dynamics Conference[A].22nd AIAA Computational Fluid Dynamics Conference, 2015:2293.
[11] Jiao X M, Wang D.Reconstructing high-order surfaces for meshing[J].Engineering with Computers, 2012, 28(4):361-373.
[12] Thakur A-B, Ashis G-G, Satyandra K.A survey of CAD model simplification techniques for physics-based simulation applications[J].Computer-Aided Design, 2009; 41(2):65-80.
[13] White D-R, Saigal S, Owen S-J.Meshing complexity:predicting meshing difficulty for single part CAD models[J].Eng Comput 2005; 21(1):76-90.
[14] Sheffer A, Bercovier M, Blacker T, et al.Virtual topology operators for meshing[J].International Journal of Computational Geometry& Applications, 2000, 10(3):309-31.
[15] Sheffer A.Model simplification for meshing using face clustering[J].Computer-Aided Design, 2001, 33(13):925-34.
[16] Foucault G, Cuillière J-C, François V, et al.Adaptation of CAD model topology for finite element analysis[J].Computer-Aided Design, 2008, 40(2):176-96.
[17] Foucault G, Cuillière J-C, François V, et al.Generalizing the advancing front method to composite surfaces in the context of meshing constraints topology[J].Computer-Aided Design, 2013, 45(11):1408-25.
[18] Shapiro V, Tsukanov I, Grishin A.Geometric issues in computer aided design/computer aided engineering integration[J].J Comput Inf Sci Eng, 2011, 11(2):1-13.
[19] Nolan D-C, Tierney C-M, Armstrong C-G, et al.Defining simulation intent[J].Computer-Aided Design, 2015, 59:50-63.
[20] Yang J M, Zhao G.Surface Blending Using T-splines in Semi-NURBS Form[J].Computer-Aided Design, 2022, 146.
备注/Memo
收稿日期:2022-09-07
基金项目:四川省科技厅重大专项资助项目(2022ZDZX0001)
通信作者:何晓曦.Email:13539852@qq.com