ZHANG Zhenjia,GAN Gang.A Multivariate Dynamic Scheduling Algorithm for Heterogeneous Executor[J].Journal of Chengdu University of Information Technology,2024,39(01):28-36.[doi:10.16836/j.cnki.jcuit.2024.01.006]
基于多变量的执行体动态调度算法
- Title:
- A Multivariate Dynamic Scheduling Algorithm for Heterogeneous Executor
- 文章编号:
- 2096-1618(2024)01-0028-09
- Keywords:
- cyberspace security; endogenous safety and security; mimic defense; dynamic heterogeneous redundancy; quantitative algorithm; scheduling algorithm; number of executing entities
- 分类号:
- TP393.08
- 文献标志码:
- A
- 摘要:
- 拟态防御技术致力于从内生安全的角度构建安全可靠的系统来解决网络空间中攻防不对称的问题。作为拟态防御中的重要部件,调度模块的关键问题之一是异构冗余体的量化工作。而现有的研究中对异构冗余体的指标不能全面量化,同时调度算法大多将执行体数量设定为某一固定值,对安全性、动态性以及运行效率造成影响。结合调度算法的特性,分析异构冗余体量化过程中的一些重要指标以及这些指标对动态异构冗余构造带来的收益,提出一种多变量负反馈调度算法。通过对多种因素的量化及计算,并在调度过程中对执行体组的状态进行监控,实现执行体数量根据执行体组情况的动态调整。实验结果表明,执行体数量可动态调整提高了动态异构冗余构造的动态性,保持良好的防御能力的同时具有更高的运行效率。
- Abstract:
- Mimic defense technology aims to create a secure and dependable system that addresses the issue of asymmetric attack and defense in cyberspace.As an important part of the mimic defense,one of the key problems of the scheduling module is the quantification of the heterogeneous executor.The current research on the indicators of the heterogeneous executor cannot fully achieve quantification,and most scheduling algorithms fix the number of execution entities, which impacts security,dynamic ability,and operational efficiency.Combined with the characteristics of the scheduling algorithm,this paper analyzes some significant indicators in the process of heterogeneous executor quantification and the benefits of these indicators on the construction of dynamic heterogeneous executor and proposes a multivariate dynamic scheduling algorithm for the heterogeneous executor.By quantifying and calculating various factors and monitoring the status of the executive body group during the scheduling process,the number of executive bodies can be dynamically adjusted according to the situation of the executor group,and verified by simulation experiments.The experiment demonstrates that the number of executors can be dynamically adjusted to improve the dynamic nature of dynamic heterogeneous redundancy construction, maintain good defense capability and have higher operational efficiency.
参考文献/References:
[1] Rios Insua David,Couce-Vieira Aitor,Rubio Jose A,et al.An Adversarial Risk Analysis Framework for Cyberse-curity[J].Risk analysis:an official publication of the Society for Risk Analysis,2019,41(1):16-36.
[2] Jajodia S,Ghosh A K,Swarup V,et al.Moving Target Defense: Creating Asymmetric Uncertainty for Cyber Threats[J].Springer Ebooks,2011,54.
[3] 邬江兴.网络空间拟态防御研究[J].信息安全学报,2016(4):10.
[4] 戴人杰,柴小丽,邵培南,等.拟态通用运行环境外部表决机制研究[J].计算机系统应用,2021,30(10):180-186.
[5] 扈红超,陈福才,王禛鹏.拟态防御DHR模型若干问题探讨和性能评估[J].信息安全学报,2016,1(4):40-51.
[6] 武兆琪,张帆,郭威,等.一种基于执行体异构度的拟态裁决优化方法[J].计算机工程,2020,46(5):12-18.
[7] 杨林,王永杰,张俊.FAWA:一种异构执行体的负反馈动态调度算法[J].计算机科学,2021,48(8):284-290.
[8] 李俊,王志浩,陈迎春.一种基于执行体安全性的智能仲裁算法[J].通信技术,2021,54(4):929-937.
[9] 韩进,臧斌宇.软件相异性对于系统安全的有效性分析[J].计算机应用与软件,2010,27(9):273-275.
[10] 姚文斌,杨孝宗.相异性软件组件选择算法设计[J].哈尔滨工业大学学报,2003(3):261-264.
[11] 魏帅,张辉华,苏野,等.面向拟态防御系统的高阶异构度大数判决算法[J].计算机工程,2021,47(5):30-35.
[12] 贾洪勇,潘云飞,刘文贺,等.基于高阶异构度的执行体动态调度算法[J].通信学报,2022,43(3):233-245.
[13] Wu Z, Wei J. Heterogeneous Executors Scheduling Algori-thm for Mimic Defense Systems[C].2019 IEEE 2nd International Conference on Computer and Communi-cation Engineering Technology(CCET).IEEE,2019.
[14] 魏帅,于洪,顾泽宇,等.面向工控领域的拟态安全处理机架构[J].信息安全学报,2017,2(1):54-73.
[15] Chao Qi,Jiangxing Wu, Hongchao Hu,et al.Dynamic-scheduling mechanism of controllers based on security policy in software-defined network[J].Electronics Letters,2016,52(23).
[16] Hongchao Hu,Zhenpeng Wang,Guozhen Cheng,et al.MNOS: a mimic network operating system for software defined networks[J].IET Information Security,2017,11(6).
[17] 李军飞.软件定义网络中拟态防御的关键技术研究[D].郑州:战略支援部队信息工程大学,2019.
[18] Parzen Emanuel.On Estimation of a Probability Density Function and Mode[J].The Annals of Mathematical Statistics,1962,33(3).
[19] Adam Lipowski,Dorota Lipowska.Roulette-wheel selection via stochastic acceptance[J].Physica A:Statistical Mechanics and its Applications,2011,391(6).
[20] 高明,罗锦,周慧颖,等.一种基于拟态防御的差异化反馈调度判决算法[J].电信科学,2020,36(5):73-82.
[21] 丁绍虎,齐宁,郭义伟.基于M-FlipIt博弈模型的拟态防御策略评估[J].通信学报,2020,41(7):186-194.
[22] 蔡雨彤,常晓林,石禹,等.动态平台技术防御攻击的瞬态效能量化分析[J].信息安全学报,2019,4(4):59-67.
[23] 张兴明,顾泽宇,魏帅,等.拟态防御马尔可夫博弈模型及防御策略选择[J].通信学报,2018,39(10):143-154.
[24] 吴正江,姚琪,冯四风,等.基于数据库二进制日志的竞赛式仲裁优化方案[J].计算机工程,2021,47(5):24-29.
[25] 高振斌,贾广瑞,张文建,等.基于异常值的拟态裁决优化方法[J].计算机应用研究,2021,38(7):2066-2071.
[26] Choi J,Goh K I.Dynamics of consensus formation on multiplex networks:The majority-vote model[C].APS March Meeting 2018.American Physical Society,2018.
[27] Bass J.Voting in Real-time Distributed Computer Control Systems[J].University of Sheffield,1995,20(1):93-102.
备注/Memo
收稿日期:2023-03-27
基金项目:四川省哲学社会科学基金资助项目(SC21B034); 四川省科技厅重点研发资助项目(23ZDYF0380、2021ZYD0011)