REN Bo,WANG Lu-tao,DENG Xu,et al.An Improved Deep Learning Network Structure for English Character Recognition[J].Journal of Chengdu University of Information Technology,2017,(03):259-263.[doi:10.16836/j.cnki.jcuit.2017.03.005]
一种改进深度学习网络结构的英文字符识别
- Title:
- An Improved Deep Learning Network Structure for English Character Recognition
- 文章编号:
- 2096-1618(2017)03-0259-05
- 关键词:
- 深度学习; 网络结构; 手写体; Letter Recognition
- Keywords:
- deep learning; network structure; handwriting; letter recognition
- 分类号:
- TP183
- 文献标志码:
- A
- 摘要:
- 自Geoffrey Hinton于2006年在《Reducing the dimensionality of data with neural networks》一文中首次提出深度学习(Deep Learning)的概念,深度学习就受到了研究人员的持续关注。深度学习利用多层的神经网络模拟人类大脑的多层抽象学习过程。其中网络结构设计和特征提取是数据挖掘和模式识别应用中的关键问题。而深度学习对手写体数字识别的准确率一直是衡量一个深度学习算法或网络结构优劣的重要标准。提出一种改进的深度学习网络结构,通过对手写体英文数据库Letter Recognition的识别实验结果表明,该深度学习网络结构的识别正确率相比传统的深度学习网络有了明显的提高。
- Abstract:
- Since Geoffrey Hinton proposed the concept of "Deep Learning" in a paper, "Reducing the dimensionality of data with neural networks", in 2006, in the first time. Deep learning has received sustained attention from researchers. Deep learning use multi-layer neural network to simulation of the multi-layer abstract learning process of human brains. The design of network structure and feature extraction are the key problems in data mining and applications of pattern recognition. The accuracy of handwritten numeral recognition in deep learning has always been an important criterion for measuring the deep learning algorithm or network structure. In this paper, an improved network of deep learning structure is proposed. The experimental results show that the recognition rate of the deep learning network structure is significantly higher than the traditional network structure deep learning.
参考文献/References:
[1] HintonG E,Salakhutdinov R R.Reducing the dimensionality of data with neural networks[J].Science,2006,313:504.
[2] Dan C,Meier U,Schmidhuber J.Multi-column deep neural networks for image classification[J].2012,157(10):3642-3649.
[3] 孙志军,薛磊,许阳明,等.深度学习研究综述[J].计算机应用研究,2012,29(8):2806-2810.
[4] Cheriyadat A M.Unsupervised feature learning for aerial scene classification[J].IEEE Transactions on Geoscience & Remote Sensing,2014,52(1):439-451.
[5] Zhu H.On information and sufficiency[J].Working Papers,1997,157(1):1-7.
[6] Friedman J,Jerome T,Hastie R.Regularization Paths for Generalized Linear Models Via Coordinate Descent[J].Journal of Statistical Software,2010,33(1):1.
[7] The10 Breakthrough Technologies 2013[N].MIT Technology Review,2013-04-23.
[8] Erhan D,Bengio Y,Couville A,et al.Why does unsupervised pre-training help deep learning[J].Journal of Machine Learning Research,2010,11(3):625-660.
[9] Bengio Y,Lecun Y.Scaling learning algorithms towards AI[C].Large-Scale Kernel Machines.2007:321-358.
[10] 杜敏,赵全友.基于动态权值集成的手写数字识别方法[J].计算机工程与应用,2010,46(27):182-184.
相似文献/References:
[1]张 斌,王 强.一种改进型卷积神经网络的图像分类方法[J].成都信息工程大学学报,2019,(01):39.[doi:10.16836/j.cnki.jcuit.2019.01.009]
ZHANG Bin,WANG Qiang.An Improved Convolution Neural Network Image Classification Method[J].Journal of Chengdu University of Information Technology,2019,(03):39.[doi:10.16836/j.cnki.jcuit.2019.01.009]
[2]唐明轩,李孝杰,周激流.基于Dense Connected深度卷积神经网络的
自动视网膜血管分割方法[J].成都信息工程大学学报,2018,(05):525.[doi:10.16836/j.cnki.jcuit.2018.05.007
]
TANG Ming-xuan,LI Xiao-jie,ZHOU Ji-liu.Automatic Retinal Vascular Segmentation Method based on
Densely Connected Convolution Neural Network[J].Journal of Chengdu University of Information Technology,2018,(03):525.[doi:10.16836/j.cnki.jcuit.2018.05.007
]
[3]蔡姣姣,何 嘉.基于混合自动编码器的分类应用[J].成都信息工程大学学报,2016,(增刊1):1.
[4]冯金慧,陶宏才.基于注意力的深度协同在线学习资源推荐模型[J].成都信息工程大学学报,2020,35(02):151.[doi:10.16836/j.cnki.jcuit.2020.02.005]
FENG Jinhui,TAO Hongcai.An Attention-based Deep Collaborative Filtering Model for Online Course Recommendation[J].Journal of Chengdu University of Information Technology,2020,35(03):151.[doi:10.16836/j.cnki.jcuit.2020.02.005]
[5]杨 铭,文 斌.一种改进的YOLOv3-Tiny目标检测算法[J].成都信息工程大学学报,2020,35(05):531.[doi:10.16836/j.cnki.jcuit.2020.05.009]
YANG Ming,WEN Bin.An Improved YOLOv3-Tiny Target Detection Algorithm[J].Journal of Chengdu University of Information Technology,2020,35(03):531.[doi:10.16836/j.cnki.jcuit.2020.05.009]
[6]曹远杰,高瑜翔,杜鑫昌,等.口罩佩戴识别中的Tiny-YOLOv3模型算法优化[J].成都信息工程大学学报,2021,36(02):154.[doi:10.16836/j.cnki.jcuit.2021.02.005]
CAOYuanjie,GAO Yuxiang,DU Xinchang,et al.Tiny-YOLOv3 Model Algorithm is Optimized for Mask Wearing Recognition[J].Journal of Chengdu University of Information Technology,2021,36(03):154.[doi:10.16836/j.cnki.jcuit.2021.02.005]
[7]曹远杰,高瑜翔,刘海波,等.基于YOLOv4-Tiny模型剪枝算法[J].成都信息工程大学学报,2021,36(06):610.[doi:10.16836/j.cnki.jcuit.2021.06.005]
CAO Yuanjie,GAO Yuxiang,LIU Haibo,et al.Model Pruning Algorithm based on YOLOv4-Tiny[J].Journal of Chengdu University of Information Technology,2021,36(03):610.[doi:10.16836/j.cnki.jcuit.2021.06.005]
[8]晏美娟,魏 敏,文 武.一种高分辨率卫星图像道路提取方法[J].成都信息工程大学学报,2022,37(01):46.[doi:10.16836/j.cnki.jcuit.2022.01.008]
YAN Meijuan,WEI Min,WEN Wu.A Method of Road Extraction for High-Resolution Satellite Images[J].Journal of Chengdu University of Information Technology,2022,37(03):46.[doi:10.16836/j.cnki.jcuit.2022.01.008]
备注/Memo
收稿日期:2017-03-02