YUAN Zhen,XIAO Tian-gui.Climate Change and Low-frequency Signal Characteristics of Plateau Vortex, OLR and Wind Fields[J].Journal of Chengdu University of Information Technology,2018,(05):551-561.[doi:10.16836/j.cnki.jcuit.2018.05.013]
高原低涡与OLR、风场的气候变化及低频信号特征
- Title:
- Climate Change and Low-frequency Signal Characteristics of Plateau Vortex, OLR and Wind Fields
- 文章编号:
- 2096-1618(2018)05-0551-11
- Keywords:
- atmospheric science; climate change; low-frequency signal; plateau vortex; OLR; wind field
- 分类号:
- P466
- 文献标志码:
- A
- 摘要:
- 为进一步探讨高原低涡与高原大气的基本状况及其联系,通过对1981-2015年低涡频次及OLR、500 hPa经纬向风场的统计,分析其气候变化及低频振荡特征,并初步探讨了低涡频次与其他三者低频信号之间的联系。结果表明:4-8月是低涡的频发时段; 低涡频次呈逐年增加的趋势,存在显著的2 a、4 a变化周期和55 d、30 d低频振荡周期; 在低涡频发期内,OLR平均值为212.2 W·m-2,存在显著的10~12 a变化周期和45 d、20 d低频振荡,滤波中心存在东进和西退的移动特征,在纬向上表现为向南移动,500 hPa纬向风均值为3.56 m·s-1,其逐年及逐日变化均呈下降趋势,存在4 a、10 a的变化周期和75 d、45 d的低频振荡周期,30~60 d滤波信号中心以西退和北进为主要移动特征,60~90 d滤波信号中心向南移动特征明显,500 hPa经向风以北风分量为主,其逐年及逐日变化均为减小趋势,存在4 a变化周期和10-20 d低频振荡; 低涡频次与500 hPa纬向风区域平均值在1996年发生突变; 低涡频次与大气低频振荡存在密切联系,其与500 hPa经向风呈负相关性,7-8月尤为显著,与OLR和500 hPa纬向风在4月至7月中旬呈显著正相关,7月中旬至8月转为负相关,其中与OLR 30-60 d滤波信号呈高度负相关性; 500 hPa纬向风滤波信号中心的移动能较好的对应低涡频次空间分布的变化。
- Abstract:
- In order to further discuss the basic situations and relations between plateau vortex and plateau atmosphere, the characteristics of climate change and low frequency oscillation are analyzed by the statistics of the low vortex frequency and the OLR and 500hPa wind field of the 1981-2015 years. Moreover, the relationships between the frequency of the plateau vortex and the other three's low frequency signals are also discussed. The results are showed as follows: The plateau vortex is active from April to August. The frequency of the plateau vortex has an increasing trend, which has significant oscillations of 2 a and 4 a and low frequency oscillations of 55 d and 20 d. In the active period of plateau vortex, the average value of OLR is 212.2 W·m-2, there is a significant 10-12 a change cycle and low frequency oscillation of 45 d and 20 d in OLR. The filter centers exist moving characteristics of eastward or westward movement, and southward movement at latitude. The mean value of the 500 hPa zonal wind is 3.56 m·s-1, and the trend of the zonal wind has a decreasing trend in annual and daily change. The change has variation periods of 4 a and 10 a and the low frequency oscillation periods of 75 d and 45 d. The filtering signal centers of 30-60 d is mainly moving westward and northward, and the 60-90 d filter signal centers have a tendency to move southward. The north wind component is the main component of the of 500 hPa meridional wind and 500 hPa meridional wind has a 4 a variation period and 10-20 d low frequency oscillation. The mutations of annual variation of the vortex frequency and the zonal wind mean value of 500 hPa both exist in 1996. The low vortex frequency is closely related to the low frequency oscillations of the atmosphere, it is negatively correlated with the 500 hPa meridional wind, especially in 7-8 months. The low vortex frequency has a significant positive correlation with the OLR and 500 hPa zonal wind from April to mid July and turns negative correlation from mid July to August, which is highly negatively correlated with the OLR 30-60 d filtering signal. The movement of 500 hPa zonal wind filtering signal centers can better correspond to the spatial distribution of low vortex frequency.
参考文献/References:
[1] 郑庆林,王三杉,张朝林,等.青藏高原动力和热力作用对热带大气环流影响的数值研究[J].高原气象,2001(1):14-21.
[2] 范广洲,程国栋.青藏高原隆升对西北干旱气候形成影响的模拟(Ⅱ):水汽收支及高原动力、热力作用的影响[J].高原气象,2003(S1):58-66.
[3] 徐飞亚,纪立人.夏季青藏高原动力和热力的强迫定常扰动[J].大气科学,1985:(4)331-339.
[4] 郑庆林,梁丰.青藏高原动力和热力作用对季节转换期全球大气环流影响的数值研究[J].热带气象学报,1999(3):56-66.
[5] 乔钰,周顺武,马悦,等.青藏高原的动力作用及其对中国天气气候的影响[J].气象科技,2014(6):1039-1046.
[6] 王同美,吴国雄,万日金.青藏高原的热力和动力作用对亚洲季风区环流的影响[J].高原气象,2008(1):1-9.
[7] 徐国强,朱乾根.大气低频振荡研究回顾与概述[J].气象科技,2003(4):193-200.
[8] Madden R D,Julian P.Detection of a 40~50 day oscillation in the zonal wind in the tropical Pacific[J].J Atmos Sci,1971,28(5):702-708.
[9] Madden R D,Julian P.Detection of global scale circulation cells in the tropics with 40~50 day period[J].J Atmos Sci,1972,29(6):1109-1123.
[10] 章基嘉,孙国武,陈葆德.青藏高原大气低频变化的研究[M].北京:气象出版社,1991:1-50.
[11] 孙国武,陈葆德.青藏高原上空大气低频波的振荡及其经向传播[J].大气科学,1988(3):250-256.
[12] 孙国武,陈葆德.青藏高原大气低频振荡与低涡群发性的研究[J].大气科学,1994,8(1):113-121.
[13] 谢安,叶谦.OLR低频振荡与西太平洋台风活动的探讨[J].气象,1987(10):8-13.
[14] 郁淑华,高文良,彭骏. 青藏高原低涡活动对降水影响的统计分析[J].高原气象,2012(3):592-604.
[15] 王跃男,陈隆勋,何金海,等.夏季青藏高原热源低频振荡对我国东部降水的影响[J].应用气象学报,2009(4):419-427.
[16] 何光碧,高文良,屠妮妮.2000-2007年夏季青藏高原低涡切变线观测事实分析[J].高原气象,2009,28(2):549-555.
[17] 王伏村,付双喜,张德玉,等.一次引发河西走廊大暴雨的高原低涡的机制分析[J].气象,2014(4):412-423.
[18] 王鑫,李跃清,郁淑华,等.青藏高原低涡活动的统计研究[J].高原气象,2009(1):64-71.
[19] 李江萍,王式功,孙国武.高原低涡研究的回顾与展望[J].兰州大学学报(自然科学版),2012,48(4):53-71.
[20] 刘晓冉,李国平.青藏高原低涡研究的回顾与展望[J].干旱气象,2006(1):60-66.
[21] 陈功,李国平.夏季青藏高原低涡的切向流场及波动特征分析[J].气象学报,2011(6):956-963.
[22] 青藏高原低值系统会战组.盛夏青藏高原低值系统[J].气象,1977,3(9):4-7.
[23] 张鹏飞,李国平,王旻燕,等.青藏高原低涡群发性与10~30天大气低频振荡关系的初步研究[J].高原气象,2010(5):1102-1110.
[24] 陈伯民,钱正安,张立盛.夏季青藏高原低涡形成和发展的数值模拟[J].大气科学,1996(4):491-502.
[25] 唐信英,周长艳,王鸽.青藏高原低涡活动特征统计分析[J].高原山地气象研究,2014(3):41-44.
[26] 柳苗,李栋梁.青藏高原东部雨季OLR与降水变化特征及相关分析[J].高原气象,2007(2):249-256.
[27] 刘德富,康春丽.地球长波辐射(OLR)遥感与重大自然灾害预测[J].地学前缘,2003(2):427.
相似文献/References:
[1]梁家豪,陈科艺,李 毓.WRF模式中积云对流参数化方案对南海土台风“Ryan”模拟的影响研究[J].成都信息工程大学学报,2019,(02):162.[doi:10.16836/j.cnki.jcuit.2019.02.010]
LIANG Jiahao,CHEN Keyi,LI Yu.The Impact of Different Cumulus Parameterization Schemes of the WRF
Model on the Typhoon “Ryan” Simulation over the South China Sea[J].Journal of Chengdu University of Information Technology,2019,(05):162.[doi:10.16836/j.cnki.jcuit.2019.02.010]
[2]汤 彬,肖国杰,邬 亮.拉萨市近54年气温变化特征[J].成都信息工程大学学报,2019,(01):72.[doi:10.16836/j.cnki.jcuit.2019.01.014]
TANG Bin,XIAO Guojie,WU Liang.Variation Characteristics of Air Temperature in Lhasa City in Recent 54 Years[J].Journal of Chengdu University of Information Technology,2019,(05):72.[doi:10.16836/j.cnki.jcuit.2019.01.014]
[3]廖 琦,肖天贵,金荣花.东亚副热带西风急流年际变化特征分析[J].成都信息工程大学学报,2018,(01):68.[doi:10.16836/j.cnki.jcuit.2018.01.013]
LIAO Qi,XIAO Tian-Gui,JIN Rong Hua.Analysis on Inter-annual Variation of EastAsian Subtropical Westerly Jet[J].Journal of Chengdu University of Information Technology,2018,(05):68.[doi:10.16836/j.cnki.jcuit.2018.01.013]
[4]喻乙耽,马振峰,范广洲.华西秋雨气候特征分析[J].成都信息工程大学学报,2018,(02):164.[doi:10.16836/j.cnki.jcuit.2018.02.011]
YU Yi-dan,MA Zhen-feng,FAN Guang-zhou.The Analysis of Climatic Feature of Autumn Rainfall in West China[J].Journal of Chengdu University of Information Technology,2018,(05):164.[doi:10.16836/j.cnki.jcuit.2018.02.011]
[5]孙康慧,巩远发.20世纪70年代末云南省雨季降水的突变及原因分析[J].成都信息工程大学学报,2018,(02):177.[doi:10.16836/j.cnki.jcuit.2018.02.012]
SUN Kang-hui,GONG Yuan-fa.Abrupt Change of Precipitation in Rainy Season in YunnanProvince in Late 1970s and its Cause Analysis[J].Journal of Chengdu University of Information Technology,2018,(05):177.[doi:10.16836/j.cnki.jcuit.2018.02.012]
[6]雷 蕾,程志刚,冯冬蕾,等.近16年秦巴山区TRMM降水资料的降尺度研究[J].成都信息工程大学学报,2018,(02):190.[doi:10.16836/j.cnki.jcuit.2018.02.014]
LEI Lei,CHENG Zhi-gang,FENG Dong-lei,et al.Statistical Downscaling of TRMM Precipitation Data inQinling-Daba Mountains Area in Recent 16 Years[J].Journal of Chengdu University of Information Technology,2018,(05):190.[doi:10.16836/j.cnki.jcuit.2018.02.014]
[7]高清泉,韩瑽琤,肖天贵.微波通信链路监测降水试验及可行性探究[J].成都信息工程大学学报,2018,(02):197.[doi:10.16836/j.cnki.jcuit.2018.02.015]
GAO Qing-quan,HAN Cong-cheng,XIAO Tian-gui.Feasibility Study of Microwave CommunicationLink for Rainfall Monitoring Purposes[J].Journal of Chengdu University of Information Technology,2018,(05):197.[doi:10.16836/j.cnki.jcuit.2018.02.015]
[8]黄 瑶,肖天贵,刘思齐.2016年7月四川持续性强降水的中尺度滤波分析[J].成都信息工程大学学报,2018,(03):307.[doi:10.16836/j.cnki.jcuit.2018.03.014]
HUANG Yao,XIAO Tian-gui,LIU Si-qi.Mesoscale Filtering Analysis of Persistent Heavy Rainfall in Sichuan in July 2016[J].Journal of Chengdu University of Information Technology,2018,(05):307.[doi:10.16836/j.cnki.jcuit.2018.03.014]
[9]李雅婷,苏德斌,孙晓光,等.四川盆地风廓线雷达大气折射率结构常数特征分析[J].成都信息工程大学学报,2018,(04):375.[doi:10.16836/j.cnki.jcuit.2018.04.005]
LI Ya-ting,SU De-bin,SUN Xiao-guang,et al.Characteristic Analysis of Atmospheric Structure Constant of Refractive Index of
Sichuan Basin based on Wind Profiler Radar[J].Journal of Chengdu University of Information Technology,2018,(05):375.[doi:10.16836/j.cnki.jcuit.2018.04.005]
[10]宾 昕,程志刚,王俊锋,等.近17a秦巴山区NDVI季节变化差异及其海拔依赖性特征分析[J].成都信息工程大学学报,2019,(03):302.[doi:10.16836/j.cnki.jcuit.2019.03.016]
BIN Xin,CHENG Zhigang,WANG Junfeng,et al.Seasonal Variation of NDVI and Altitude Dependent Characteristics in Qinling-Daba Mountains in Recent 17 Years[J].Journal of Chengdu University of Information Technology,2019,(05):302.[doi:10.16836/j.cnki.jcuit.2019.03.016]
[11]石 宇,肖子牛,朱克云.夏季角动量输送变化与中国东部降水的关系[J].成都信息工程大学学报,2018,(04):456.[doi:10.16836/j.cnki.jcuit.2018.04.016]
SHI Yu,XIAO Zi-niu,ZHU Ke-yun.Relationship between Angular Momentum Transportand Precipitation in Eastern China in Summer[J].Journal of Chengdu University of Information Technology,2018,(05):456.[doi:10.16836/j.cnki.jcuit.2018.04.016]
[12]金凡琦,程志刚,靳立亚,等.成渝城市群热环境效应与植被覆盖度关系研究[J].成都信息工程大学学报,2019,(03):308.[doi:10.16836/j.cnki.jcuit.2019.03.017]
JIN Fanqi,CHENG Zhigang,JIN Liya,et al.Study on the Relationship between Thermal Environment Effect and Vegetation Coverage in Chengyu Urban Agglomeration[J].Journal of Chengdu University of Information Technology,2019,(05):308.[doi:10.16836/j.cnki.jcuit.2019.03.017]
[13]陈宇航,范广洲,张永莉,等.基于GLDAS资料的青藏高原下垫面变化特征分析[J].成都信息工程大学学报,2016,(02):204.
CHEN Yu-hang,FAN Guang-zhou,ZHANG Yong-li,et al.The Analysis of Underlying Variation Characteristics
over Tibetan Plateau based on GLDAS Data[J].Journal of Chengdu University of Information Technology,2016,(05):204.
[14]喻琴昆,肖天贵,金荣花.热带MJO活动对四川地区2000~2010年
夏季降水的影响[J].成都信息工程大学学报,2016,(02):228.
YU Qin-kun,XIAO Tian-gui,JIN Rong-hua.Impact of MJO Activities on Precipitation in Summer of 2000-2010 over Sichuan[J].Journal of Chengdu University of Information Technology,2016,(05):228.
[15]李星星,陈权亮,姚世博.热带大气季节内振荡对华南后汛期降水的影响[J].成都信息工程大学学报,2017,(02):192.[doi:10.16836/j.cnki.jcuit.2017.02.013]
LI Xing-xing,CHEN Quan-liang,YAO Shi-bo.Impact of the Madden-Julian Oscillation on Post-flood
Season Precipitation in South China[J].Journal of Chengdu University of Information Technology,2017,(05):192.[doi:10.16836/j.cnki.jcuit.2017.02.013]
[16]王 超,肖天贵,假 拉,等.西藏地区降雪降水天数比率(SD/PD)变化特征分析[J].成都信息工程大学学报,2017,(05):532.[doi:10.16836/j.cnki.jcuit.2017.05.011]
WANG Chao,XIAO Tian-gui,JIA La,et al.Changes in Days of Snowfall/Precipitation Ratio in Tibet[J].Journal of Chengdu University of Information Technology,2017,(05):532.[doi:10.16836/j.cnki.jcuit.2017.05.011]
[17]任晓玥,王 伟,周 可.1979-2017年江淮梅雨降水变化及一次典型事件特征分析[J].成都信息工程大学学报,2019,(06):632.[doi:10.16836/j.cnki.jcuit.2019.06.012]
REN Xiaoyue,WANG Wei,ZHOU Ke.Precipitation Changes of Jianghuai Meiyu from 1979 to 2017 and a Typical Event Feature Analysis[J].Journal of Chengdu University of Information Technology,2019,(05):632.[doi:10.16836/j.cnki.jcuit.2019.06.012]
[18]张禄英,毛文书,庞 波.成都平原气候变化特征[J].成都信息工程大学学报,2020,35(02):179.[doi:10.16836/j.cnki.jcuit.2020.02.009]
ZHANG Lu-ying,MAO Wen-shu,PANG Bo.Characteristics of Climate Change in Chengdu Plain[J].Journal of Chengdu University of Information Technology,2020,35(05):179.[doi:10.16836/j.cnki.jcuit.2020.02.009]
[19]霍雅姝,肖天贵,毛世杰,等.成都市龙泉驿区近37 a气候变化特征研究[J].成都信息工程大学学报,2020,35(03):313.[doi:10.16836/j.cnki.jcuit.2020.03.012]
HUO Yashu,XIAO Tiangui,MAO Shijie,et al.Research on the Characteristics of Climate Change in Longquanyi District of Chengdu City in Recent 37 Years[J].Journal of Chengdu University of Information Technology,2020,35(05):313.[doi:10.16836/j.cnki.jcuit.2020.03.012]
[20]王富萍,肖国杰,蒲学敏,等.宜宾近59 a日照变化特征分析[J].成都信息工程大学学报,2020,35(03):347.[doi:10.16836/j.cnki.jcuit.2020.03.016]
WANG Fuping,XIAO Guojie,PU Xuemin,et al.Analysis on the Variation Characteristics of Sunlight in Yibin near 59 Years[J].Journal of Chengdu University of Information Technology,2020,35(05):347.[doi:10.16836/j.cnki.jcuit.2020.03.016]
备注/Memo
收稿日期:2018-02-24 基金项目:国家科技支撑资助项目(2015BAC03B05); 国家自然科学基金重点基金资助项目(91337215); 国家重点基础研究发展计划资助项目(2013CB733200)