ZHANG KaiFeng,CAO Ning,ZHANG Min.Evaluation and Asymmetry Feature Analysis of ENSO Events in CMIP5 Multi-models[J].Journal of Chengdu University of Information Technology,2019,(03):278-286.[doi:10.16836/j.cnki.jcuit.2019.03.013]
CMIP5多模式下的ENSO模拟评估及非对称性特征分析
- Title:
- Evaluation and Asymmetry Feature Analysis of ENSO Events in CMIP5 Multi-models
- 文章编号:
- 2096-1618(2019)03-0278-09
- 关键词:
- 大气物理学与大气环境; 气候模拟; ENSO; CMIP5模式
- 分类号:
- TP301.6
- 文献标志码:
- A
- 摘要:
- 为了评估参与世界气候研究计划组织的“第五次国际耦合模式比较计划(CMIP5)”的全球气候模式对ENSO(厄尔尼诺和南方涛动)现象非对称性特征的模拟能力,采用泰勒图统计分析、合成分析等方法,对参与CMIP5计划的18个耦合模式模拟资料与观测资料进行对比分析。可得出CMIP5模式对热带太平洋的整体海温状况的模拟较好,对表征热带太平洋海温显著年际变异的4个指标海域的海温状况模拟较差。其中多模式集合平均的综合模拟能力最优,其次是CCSM4。HadCM3的综合模拟能力最差。ENSO海温异常强度的非对称特征表现为El Niño强于La Niña。模式对海温异常中心强度的模拟效果较理想,模拟的强度与观测的所相差在正负0.3 ℃左右。ENSO海温异常空间分布的非对称性特征表现在La Niña冷异常区域比El Niño暖异常区域大,模式对ENSO 强事件的空间分布模拟较理想,与观测基本一致,但不能较好模拟弱事件海温异常区域关于赤道对称的特征。ENSO海温异常持续性的非对称性特征主要表现在La Niña的持续时间较短,El Niño的持续时间较长。模式都能较好模拟ENSO持续性特征,但对ENSO衰退事件的海温异常中心强度的模拟效果不理想。
- Abstract:
- In order to evaluate the CMIP5(WCRP Coupled Model Intercomparison Project Phase 5)global climate model for ENSO asymmetry feature simulation capabilities. The model and observation data were compared and analyzed by using Taylor's diagram and synthetic analysis. It can be concluded that the CMIP5 model has a good simulation effect on the overall sea surface temperature of the tropical Pacific Ocean, and has a poor simulation effect on the sea temperature conditions of the four sea areas with significant interannual variability of the Pacific SST. Among them, the multi-mode ensemble average has the best comprehensive simulation capability, followed by CCSM4, and HadCM3 has the worst comprehensive simulation capability. The asymmetrical characteristics of ENSO temperature anomalous intensity is characterized by El Nino being stronger than La Nina. The simulation effect of the model on the anomaly center intensity of the SST is ideal, and the simulated intensity differs from the observed intensity by about0.3 ℃ . ENSO's asymmetry characteristics of spatial distribution of SST anomaly is characterized by the fact that the La Nina cold anomaly region is larger than the El Nino warm anomaly region. The spatial distribution simulation of the ENSO strong event is ideal, which is consistent with the observation. However, the symmetry of the equator in the SST anomaly region cannot be simulated well for the weak event. The asymmetry of the ENSO SST anomaly is mainly characterized by the short duration of La Nina and the longer duration of El Nino. The model can simulate better about the persistence characteristics of ENSO, but the simulation effect on the center intensity of the sea temperature anomaly in the ENSO decay event is not ideal.
参考文献/References:
[1] Cai W,Borlace S,Lengaigne M,et al.Increasing frequency of extreme El Niño events due to greenhouse warming[J].Nature Climate Change,2014,4(2):111-116.
[2] Cai W,Santoso A,Wang G,et al.ENSO and greenhouse warming[J].Nature Climate Change,2015,5(9).
[3] Cai W,Wang G,Santoso A,et al.Increased frequency of extreme La Nina events under greenhouse warming[J].Nature Climate Change,2015,5(2):132-137.
[4] 胡增臻,王绍武.与ENSO现象有关的全球灾害性天气气候现象[J].灾害学,1990(1):76-79.
[5] 王小玲,宋文玲.ENSO与登陆我国热带气旋的关系研究 热带气象学报[J].2009,25(5):576-580.
[6] 李威,翟盘茂.中国极端强降水日数与ENSO的关系[J].气候变化研究进展,2009,5(6):336-342.
[7] 宋迅殊.ENSO事件非对称性成因研究[J].海洋学研究,2013(1):35-44.
[8] An S I,Jin F F. Nonlinearity and Asymmetry of ENSO[J].Journal of Climate,2004,17(11):2033-2038.
[9] 徐康.东部和中部型ENSO模态及其对中国降水影响的差异[D].南京:南京信息工程大学,2013.
[10] Choi K Y,Vecchi G A,Wittenberg A T.ENSO Transition,Duration,and Amplitude Asymmetries:Role of the Nonlinear Wind Stress Coupling in a Conceptual Model[J].Journal of
Climate,2013,26(23):9462-9476.
[11] Kim S T,Yu J Y.The two types of ENSO in CMIP5 models[J].Geophysical Research Letters,2012,39(11):221-228.
[12] 王澄海,吴永萍,崔洋.CMIP研究计划的进展及其在中国地区的检验和应用前景[J].地球科学进展,2009,24(5):461-468.
[13] 周天军,邹立维,吴波,等.中国地球气候系统模式研究进展:CMIP计划实施近20年回顾[J].气象学报,2014,72(5):892-907.
[14] Taylor K E,Stouffer R J,Meehl G A.An Overview of CMIP5 and the Experiment Design[J].Bulletin of the American Meteorological Society,2012,93(4):485-498.
[15] Bellenger H,Guilyardi E,Leloup J,et al.ENSO representation in climate models:from CMIP3 to CMIP5[J].Climate Dynamics,2014,42(7-8):1999-2018.
[16] 郭彦,董文杰,任福民,等.CMIP5模式对中国年平均气温模拟及其与CMIP3模式的比较[J].气候变化研究进展,2013,9(3):181-186.
[17] 周天军,陈晓龙,董璐,等.Chinese Contribution to CMIP5:An Overview of Five Chinese Models' Performances[J].气象学报((英文版),2014,28(4):481-509.
[18] Rao J,Ren R C.Statistical Characteristics of ENSO Events in CMIP5 Models[J].大气和海洋科学快报(Atmospheric and Oceanic Science Letters),2014,7(6):546-552.
[19] 张芳,董敏,吴统文.CMIP5模式对ENSO现象的模拟能力评估[J].气象学报,2014(1):30-48.
[20] Trenberth K E.The definition of El Niño[J].Bulletin of the American Meteorological Society,1997,78(12):2771-2777.
[21] Taylor K E.Summarizing multiple aspects of model performance in a single diagram[J].Journal of Geophysical Research Atmospheres,2001,106(D7):7183-7192.
[22] Gleckler P J,Taylor K E.Doutriaux C.Performance metrics for climate models[J].Journal of Geophysical Research Atmospheres,2008,113(D6):102-124.
[23] 蒋帅,江志红,李伟,等.CMIP5模式对中国极端气温及其变化趋势的模拟评估[J].气候变化研究进展,2017,13(1):11-24.
[24] 池建军,骆永军.Ni(n)o综合区对研究ENSO的效果评估[J].气象研究与应用,2009,30(1):8-11.
[25] 曹璐.两类ENSO事件的监测及大气的响应[D].南京:南京大学,2011.
相似文献/References:
[1]刘 恒,周筠珺,赵鹏国,等.北京地区飑线天气雷电活动的数值模拟研究[J].成都信息工程大学学报,2018,(03):296.[doi:10.16836/j.cnki.jcuit.2018.03.013]
LIU Heng,ZHOU Yun-jun,ZHAO Peng-guo,et al.Numerical Simulation Study on Electrical Activity of a Squall Line in Beijing[J].Journal of Chengdu University of Information Technology,2018,(03):296.[doi:10.16836/j.cnki.jcuit.2018.03.013]
[2]成鹏伟,周筠珺,赵鹏国,等.北京与成都城市下垫面闪电时空分布特征对比研究[J].成都信息工程大学学报,2018,(03):326.[doi:10.16836/j.cnki.jcuit.2018.03.016]
CHENG Peng-wei,ZHOU Yun-jun,ZHANO Peng-guo,et al.A Comparative Study on Space-time Distribution Characteristics ofLightning Flashes in Beijing and Chengdu Cities[J].Journal of Chengdu University of Information Technology,2018,(03):326.[doi:10.16836/j.cnki.jcuit.2018.03.016]
[3]蔡宏珂,郑泽华,陈权亮,等.Kelud火山喷发对平流层光学性质的影响[J].成都信息工程大学学报,2018,(05):572.[doi:10.16836/j.cnki.jcuit.2018.05.015]
CAI Hong-ke,ZHENG Ze-hua,CHEN Quan-liang,et al.The Lidar Observation for Stratospheric Optical
Features Influenced by Kelud Eruption[J].Journal of Chengdu University of Information Technology,2018,(03):572.[doi:10.16836/j.cnki.jcuit.2018.05.015]
[4]张银量,宣越健,张金强,等.东亚3 个站点臭氧层顶和对流层顶关系研究[J].成都信息工程大学学报,2016,(01):116.
ZHANG Yin-Liang,XUAN Yue-Jian,ZHANG Jin-Qiang,et al.A Study of Relationship between Ozonopause and Tropopause
over Three Sites in the East Asian[J].Journal of Chengdu University of Information Technology,2016,(03):116.
[5]鞠诗尧,张小玲,范广洲,等.北京地区一次持续重污染过程的气象成因分析[J].成都信息工程大学学报,2017,(04):419.[doi:10.16836/j.cnki.jcuit.2017.04.012]
JU Shi-yao,ZHANG Xiao-ling,FAN Guang-zhou,et al.Analysis of Meteorological Conditions for a Continuous
Heavy Pollution Process in Beijing[J].Journal of Chengdu University of Information Technology,2017,(03):419.[doi:10.16836/j.cnki.jcuit.2017.04.012]
[6]李一凡,肖 辉,杨慧玲,等.北京地区一次冬季降雪天气及其云微物理过程的数值模拟[J].成都信息工程大学学报,2020,35(01):55.[doi:10.16836/j.cnki.jcuit.2020.01.009]
LI Yifan,XIAO Hui,YANG Huiling,et al.Numerical Simulation of a Beijing Winter Snowstorm and its Cloud Microphysical Processes[J].Journal of Chengdu University of Information Technology,2020,35(03):55.[doi:10.16836/j.cnki.jcuit.2020.01.009]
[7]刘蕾蕾,聂椿力,张 梦,等.海陆风对广东沿海地区秋冬季污染物的影响研究[J].成都信息工程大学学报,2021,36(03):316.[doi:10.16836/j.cnki.jcuit.2021.03.013]
LIU Leilei,NIE Chunli,ZHANG Meng,et al.Effects of Land-sea Breeze on Autumn and Winter Pollution in some Coastal Areas of Guangdong Province[J].Journal of Chengdu University of Information Technology,2021,36(03):316.[doi:10.16836/j.cnki.jcuit.2021.03.013]
[8]周 昱,尹志聪,周筠珺.贵州威宁一次雹暴过程的雷达观测与数值模拟研究[J].成都信息工程大学学报,2022,37(02):177.[doi:10.16836/j.cnki.jcuit.2022.02.011]
ZHOU Yu,YIN Zhicong,ZHOU Yunjun.Observation and Numerical Simulation Study of a Hailstorm in Weining Guizhou Province[J].Journal of Chengdu University of Information Technology,2022,37(03):177.[doi:10.16836/j.cnki.jcuit.2022.02.011]
[9]路增鑫,范广洲.一次高原低涡过程云微物理特征模拟研究[J].成都信息工程大学学报,2023,38(02):166.[doi:10.16836/j.cnki.jcuit.2023.02.007]
LU Zengxin,FAN Guangzhou.Simulation of Cloud Microphysical Characteristics during a Plateau Vortex Process[J].Journal of Chengdu University of Information Technology,2023,38(03):166.[doi:10.16836/j.cnki.jcuit.2023.02.007]
[10]王莹珏,彭思越,张浩然,等.广东龙门地区雨滴谱特征研究[J].成都信息工程大学学报,2023,38(05):548.[doi:10.16836/j.cnki.jcuit.2023.05.009]
WANG Yingjue,PENG Siyue,ZHANG Haoran,et al.Raindrop Spectrum Characteristics in Longmen Guangdong Province[J].Journal of Chengdu University of Information Technology,2023,38(03):548.[doi:10.16836/j.cnki.jcuit.2023.05.009]
备注/Memo
收稿日期:2018-07-06 基金项目:国家重点研发计划资助项目(2016YFC1401403); 国家自然科学基金资助项目(41475120)