LIANG Jiaying,CHEN Quanliang.Analysis of Temporal and Spatial Distribution Characteristics of Multiple Tropopauses over the Tibetan Plateau[J].Journal of Chengdu University of Information Technology,2020,35(01):69-78.[doi:10.16836/j.cnki.jcuit.2020.01.010]
青藏高原多种对流层顶的时空分布特征对比分析
- Title:
- Analysis of Temporal and Spatial Distribution Characteristics of Multiple Tropopauses over the Tibetan Plateau
- 文章编号:
- 2096-1618(2020)01-0069-10
- Keywords:
- Tibetan Plateau; tropopause; spatial and temporal distribution; climatology; climate change
- 分类号:
- P465
- 文献标志码:
- A
- 摘要:
- 为研究青藏高原上空多种对流层顶的时空变化特征,基于2008-2016年COSMIC掩星数据及ERA-Interim再分析资料,根据WMO的定义得到第一对流层顶(the first lapse-rate tropopause,LRT1)、第二对流层顶(the second lapse-rate tropopause,LRT2)与温度最低点对流层顶(cold point tropopause,CPT),因LRT1夏季出现频率低于5%,仅讨论LRT2与CPT的空间分布特征及其与温度场的联系,并分析3种对流层顶的时间变化特征。结果表明,7-9月LRT2在LRT对流层顶中占比90%以上; LRT1、LRT2与CPT高度在年内分别表现出双峰型、单峰型及单峰单谷型的特点; LRT1对流层顶在春秋季较高,夏季最低; LRT2对流层顶夏季高度最高,空间上纬向分布型特征明显; CPT对流层顶则在春冬季较高; 且LRT2高度与对流层上层温度呈正相关,CPT高度与100 hPa温度为正相关,这与两种对流层顶的成因不同有关。
- Abstract:
- In order to figure out temporal and spatial variations of tropopause over the Tibetan Plateau, based on the COSMIC(Constellation Observing System for Meteorology Ionosphere and Climate)data from 2008 to 2016,the ERA-Interim reanalysis data and the definition of WMO, the paper obtains LRT1(the first lapse-rate tropopause),LRT2(the second lapse-rate tropopause)and CPT(cold point tropopause). The occurrence of LRT1 in summer is less than 5%, therefore, the paper just discusses the spatial distribution characteristics of LRT2 and CPT as well as their relationship with temperature field, and analyzes the temporal variations of three tropopause. The results show that LPT2 accounts for over 90% in LPT from July to September; the height of LRT1, LRT2 and CPT presents the bimodal type, single-peak type and single peak-valley type respectively during the year; LPT1 is higher in spring and autumn but lowest in summer; LPT2 is highest in summer with the distinct latitudinal distribution in space; CPT is relatively higher in spring and winter; the height of LRT2 is positively correlated with the upper tropospheric temperature, so is the CPT height with the temperature of 100 hPa, which is related to the different formation of these two tropopause.
参考文献/References:
[1] Holton J R,Haynes P H,Mcintyre M E,et al.Stratosphere-Troposphere Exchange[J].Reviews of Geophysics,1995,33(4):403-440.
[2] Shepherd T G.The middle atmosphere[J].Journal of Atmospheric and Solar-Terrestrial Physics,2000,62(17-18):1587-1601.
[3] Thuburn J,Craig GC.On the temperature structure of the tropical substratosphere[J].Journalof Geophysical Research Atmospheres,2002,107(D2):4017-4026.
[4] Randel W J,Wu F,Gaffen D J.Interannual variability of the tropical tropopause derived from radiosonde data and NCEP reanalyzes[J].Journal of Geophysical Research Atmospheres,2000,105(D12):15509-15523.
[5] BDSanter,MF Wehner,TM Wigley,et al.Contributions of Anthropogenic and Natural Forcing to Recent Tropopause Height Changes[J].Science,2003,301(5632):479-483.
[6] Ridley B A,Anne C M,Gregory G L,et al.NO and NO2,in the troposphere: Technique and measurements in regions of a folded tropopause[J].Journal of Geophysical Research Atmospheres,1988,93(D12):15813-15830.
[7] Uccellini L W,Keyser D,Brill K F,et al.The Presidents’ Day Cyclone of 18 19 February 1979: Influence of Upstream Trough Amplification and Associated Tropopause Folding on Rapid Cyclogenesis[J]. Monthly Weather Review,2009,113(6):962-988.
[8] ThuburnJ, Craig G C.Stratospheric Influence on Tropopause Height: The Radiative Constraint[J].Journal of the Atmospheric Sciences,1998,57(1):17-28.
[9] 王庚辰,孔琴心,陈洪滨.北京地区对流层顶变化及其对上对流层/下平流层区域臭氧变化的影响[J].大气科学,2006,30(4):587-595.
[10] 吴涧,杨茜,符淙斌,等.全球变暖背景下东亚对流层顶高度演变特征的研究[J].热带气象学报,2007,23(6):595-600.
[11] 辛玉姣,田文寿.热带对流层顶层结构的变化特征和趋势[J].气候与环境研究,2011,16(3):378-388.
[12] 冯松,汤懋苍,王冬梅.青藏高原是我国气候变化启动区的新证据[J].科学通报,1998,43(6):633-636.
[13] Liu Xiaodong,Chen Baode.Climatic warming in the Tibetan plateau during recent decades[J].International Journal of Climatology,2015,20(14):1729-1742.
[14] 吴国雄,刘屹岷,刘新,等.青藏高原加热如何影响亚洲夏季的气候格局[J].大气科学,2005,29(1):47-56.
[15] 吴国雄.我国青藏高原气候动力学研究的近期进展[J].第四纪研究,2004,24(1):1-9.
[16] 梁潇云,刘屹岷,吴国雄.青藏高原隆升对春、夏季亚洲大气环流的影响[J].高原气象,2005,V24(6):837-845.
[17] 李林,陈晓光,王振宇,等.青藏高原区域气候变化及其差异性研究[J].气候变化研究进展,2010,6(3):181-186.
[18] 杨双艳,周顺武,张人禾,等.青藏高原对流层顶高度与臭氧总量及上升运动的耦合关系[J].大气科学学报,2012,35(4):438-447.
[19] 夏昕,任荣彩,吴国雄,等.青藏高原周边对流层顶的时空分布、热力成因及动力效应分析[J].气象学报,2016,74(4):525-541.
[20] 张致爽,陈权亮,蔡宏珂.青藏高原地区对流层顶的时空变化特征[J].干旱区研究,2016,33(4):690-697.
[21] Liou Y A,Pavelyev A G,Liu S F,et al.FORMOSAT-3/COSMIC GPS Radio Occultation Mission:Preliminary Results[J].IEEE Transactions on Geoscience and Remote Sensing,2007,45(11):3813-3826.
[22] KursinskiER,Hajj GA,Schofield J T,et al.Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System[J].Journal of Geophysical Research Atmospheres,1997,102(D19):23429-23465.
[23] Anthes R,Rocken C,Kuo Y H.Application of COSMIC to Meteorology and Climate[J].Terrestrial Atmospheric & Oceanic Sciences,2000,11(1):115-156.
[24] Randel,William J.Thermal variability of the tropical tropopause region derived from GPS/MET observations[J].Journal of Geophysical Research,2003,108(D1):4024-4031.
[25] 徐晓华,高攀,张小红.利用COSMIC掩星弯曲角数据分析中国区域对流层顶结构变化[J].地球物理学报,2013,56(8):2531-2541.
[26] 王鑫,吕达仁.利用GPS掩星数据分析青藏高原对流层顶结构变化[J].自然科学进展,2007,17(7):913-919.
相似文献/References:
[1]薛志航,邓 创,孙 一.青藏高原上空臭氧时空分布特征[J].成都信息工程大学学报,2018,(04):464.[doi:10.16836/j.cnki.jcuit.2018.04.017]
XUE Zhi-hang,DENG Chuang,SUN Yi.Temporal and Spatial Distribution Characteristics ofOzone over the Tibetan Plateau[J].Journal of Chengdu University of Information Technology,2018,(01):464.[doi:10.16836/j.cnki.jcuit.2018.04.017]
[2]吴 钩,白爱娟.青藏高原季风环流情况与中亚季风降水特征分析[J].成都信息工程大学学报,2016,(01):76.
WU Gou,BAI Ai-juan.Analysis on the Characteristics of Tibetan Plateau's
Monsoon Circulation and Central Asia's Rainfall[J].Journal of Chengdu University of Information Technology,2016,(01):76.
[3]骆开怡,陈权亮.青藏高原上空平流层水汽的时空演变特征[J].成都信息工程大学学报,2022,37(04):422.[doi:10.16836/j.cnki.jcuit.2022.04.010]
LUO Kaiyi,CHEN Quanliang.Temporal and Spatial Evolution Characteristics of Stratospheric Water Vapor over the Tibetan Plateau[J].Journal of Chengdu University of Information Technology,2022,37(01):422.[doi:10.16836/j.cnki.jcuit.2022.04.010]
[4]曾 剑,张 强,张 宇,等.青藏高原高寒草甸的空气动力学粗糙度特征[J].成都信息工程大学学报,2022,37(04):429.[doi:10.16836/j.cnki.jcuit.2022.04.011]
ZENG Jian,ZHANG Qiang,ZHANG Yu,et al.The Characteristics of Aerodynamic Aoughness Length of Alpine Meadows on the Qinghai-Tibet Plateau[J].Journal of Chengdu University of Information Technology,2022,37(01):429.[doi:10.16836/j.cnki.jcuit.2022.04.011]
[5]江金昊,刘海磊,王乙竹,等.基于Himawari-8卫星数据的青藏高原大气可降水量反演算法研究[J].成都信息工程大学学报,2022,37(05):494.[doi:10.16836/j.cnki.jcuit.2022.05.002]
JIANG Jinhao,LIU Hailei,WANG Yizhu,et al.Precipitable Water Vapor Retrieval Using Himawari-8 Satellite Observations over Tibetan Plateau[J].Journal of Chengdu University of Information Technology,2022,37(01):494.[doi:10.16836/j.cnki.jcuit.2022.05.002]
备注/Memo
收稿日期:2019-03-11基金项目:国家自然科学基金资助项目(41875108)