PDF下载 分享
[1]谭诗雨,杨 玲,师春香,等.复杂背景下银行卡号识别方法研究[J].成都信息工程大学学报,2021,36(03):280-285.[doi:10.16836/j.cnki.jcuit.2021.03.007]
 TAN Shiyu,YANG Ling,SHI Chunxiang,et al.Bank Card Number Recognition System under the Complex Background based on Deep Learning[J].Journal of Chengdu University of Information Technology,2021,36(03):280-285.[doi:10.16836/j.cnki.jcuit.2021.03.007]
点击复制

复杂背景下银行卡号识别方法研究

参考文献/References:

[1] 易尧华,申春辉,刘菊华,等.结合MSCRs与MSERs的自然场景文本检测[J].中国图象图形学报,2017,22(2):154-160.
[2] 蒋人杰,戚飞虎,徐立,等.基于连通分量特征的文本检测与分割[J].中国图象图形学报,2006(11):1653-1656.
[3] 徐婷.图像文本检测与识别[D].北京:北京邮电大学,2017.
[4] Lee J J,Lee P H,Lee S W,et al.Adaboost for text detection in natural scene[C].2011 International Conference on Document Analysis and Recognition.IEEE,2011:429-434.
[5] Wang K,Babenko B,Belongie S.End-to-end scene text recognition[C].2011 International Conference on Computer Vision.IEEE,2011:1457-1464.
[6] ChengYang Fu,Wei Liu,AnanthRanga,et al.Dssd:Deconvolutional single shot detector[C].International Conference on Computer Vision Systems,2017.
[7] Liu W,Anguelov D,Erhan D,et al.Ssd:Single shot multibox detector[C].European conference on computer vision.Springer,Cham,2016:21-37.
[8] Zheng Zhang,Chengquan Zhang,Wei Shen,et al.Multi-oriented text detection with fully convolutional networks[C].IEEE Conference on Computer Vision and Pattern Recognition,2016:4159-4167.
[9] He P,Huang W,Qiao Y,et al.Reading Scene Text in Deep Convolutional Sequences[J/OL].http://arxiv.org/abs/1506.04395 arXiv:1506.04395,2015.
[10] 张彤,肖南峰.基于BP网络的数字识别方法[J].重庆理工大学学报(自然科学版),2010(3):12.
[11] 王娜,胡超芳.基于客观聚类的手写数字识别方法[J].复杂系统与复杂性科学,2019,16(2):77-84.
[12] 涂亚飞.银行卡号字符的分割与识别算法研究[D].北京:北京交通大学,2017.
[13] 刘永雪,李海明.卷积神经网络的优化在车牌号识别上的运用[J].上海电力大学学报,2020,36(4):351-356.
[14] Tian Z,Huang W,He T,et al.Detecting Text in Natural Image with Connectionist Text Proposal Network[C].European Conference on Computer Vision.Springer,Cham,2016:56-72.
[15] LeCun Y,Bottou L,Bengio Y,et al.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324.

相似文献/References:

[1]卢 丽,许源平,卢 军,等.基于社会力异常检测改进算法的人群行为模型[J].成都信息工程大学学报,2018,(01):1.[doi:10.16836/j.cnki.jcuit.2018.01.001]
 LU Li,XU Yuan-ping,LU Jun,et al.A Crowd Behavior Model based on an ImprovedSocial Force Anomaly Detection Algorithm[J].Journal of Chengdu University of Information Technology,2018,(03):1.[doi:10.16836/j.cnki.jcuit.2018.01.001]
[2]胡 婕,陶宏才.基于深度学习的领域问答系统的设计与实现[J].成都信息工程大学学报,2019,(03):232.[doi:10.16836/j.cnki.jcuit.2019.03.004]
 HU Jie,TAO Hongcai.Design and Implementation of Domain Question Answering System based on Deep Learning[J].Journal of Chengdu University of Information Technology,2019,(03):232.[doi:10.16836/j.cnki.jcuit.2019.03.004]
[3]王 强,李孝杰,陈 俊.基于He-Net的卷积神经网络算法的图像分类研究[J].成都信息工程大学学报,2017,(05):503.[doi:10.16836/j.cnki.jcuit.2017.05.007]
 WANG Qing,LI Xiao-jie,CHEN Jun.Research on Image Classification based on HE-Net Convolutional Neural Networks[J].Journal of Chengdu University of Information Technology,2017,(03):503.[doi:10.16836/j.cnki.jcuit.2017.05.007]
[4]冉元波,孙 敏,高梦清,等.双偏振天气雷达水凝物识别研究[J].成都信息工程大学学报,2017,(06):590.[doi:10.16836/j.cnki.jcuit.2017.06.003]
 RAN Yuan-bo,SUN Min,GAO Meng-qing,et al.Study on Hydrometeor Identification based on Deep Learning[J].Journal of Chengdu University of Information Technology,2017,(03):590.[doi:10.16836/j.cnki.jcuit.2017.06.003]
[5]周 咏,万 垚.基于无人机的监控系统设计[J].成都信息工程大学学报,2021,36(02):159.[doi:10.16836/j.cnki.jcuit.2021.02.006]
 ZHOU Yong,WAN Yao.Design of Surveillance System based on UAV[J].Journal of Chengdu University of Information Technology,2021,36(03):159.[doi:10.16836/j.cnki.jcuit.2021.02.006]
[6]郭楠馨,林宏刚,张运理,等.基于元学习的僵尸网络检测研究[J].成都信息工程大学学报,2022,37(06):615.[doi:10.16836/j.cnki.jcuit.2022.06.001]
 GUO Nanxin,LIN Honggang,ZHANG Yunli,et al.Botnet Detection Method based on Meta-Learning Network[J].Journal of Chengdu University of Information Technology,2022,37(03):615.[doi:10.16836/j.cnki.jcuit.2022.06.001]
[7]李 静,鲜 林,王海江.基于YOLOv3的船只检测算法研究[J].成都信息工程大学学报,2023,38(01):37.[doi:10.16836/j.cnki.jcuit.2023.01.006]
 LI Jing,XIAN Lin,WANG Haijiang.Research on Ship Detection Algorithm based on YOLOv3[J].Journal of Chengdu University of Information Technology,2023,38(03):37.[doi:10.16836/j.cnki.jcuit.2023.01.006]
[8]毛 波,杨 昊,周世杰,等.基于CMA-REPS格点预报数据的深度学习风速订正方法[J].成都信息工程大学学报,2023,38(03):264.[doi:10.16836/j.cnki.jcuit.2023.03.003]
 MAO Bo,YANG Hao,ZHOU Shijie,et al.A Deep Learning Method for Wind Speed Grid Point Forecasting Data Correction based on CMA-REPS[J].Journal of Chengdu University of Information Technology,2023,38(03):264.[doi:10.16836/j.cnki.jcuit.2023.03.003]
[9]任不凡,黄小燕,吴思东,等.基于语义信息的三维点云全景分割方法研究[J].成都信息工程大学学报,2023,38(05):535.[doi:10.16836/j.cnki.jcuit.2023.05.007]
 REN Bufan,HUANG Xiaoyan,WU Sidong,et al.Research on Panoptic Segmentation of 3D Point Clouds based on Semantic Information[J].Journal of Chengdu University of Information Technology,2023,38(03):535.[doi:10.16836/j.cnki.jcuit.2023.05.007]
[10]张卓然,张 倩,宋 智,等.基于残差Swin Transformer的天气图像识别技术研究[J].成都信息工程大学学报,2023,38(06):637.[doi:10.16836/j.cnki.jcuit.2023.06.003]
 ZHANG Zhuoran,ZHANG Qian,SONG Zhi,et al.Research on Weather Image Recognition based on Residual Swin Transformer[J].Journal of Chengdu University of Information Technology,2023,38(03):637.[doi:10.16836/j.cnki.jcuit.2023.06.003]

备注/Memo

收稿日期:2020-10-13
基金项目:四川省科技计划资助项目(2020YFH0122)

更新日期/Last Update: 2021-06-30