HU Jiajie,WANG Wei.Analysis and Comparison of Precipitation Process between 2020 and 1998 Meiyu Periods in the Yangtze-Huaihe River[J].Journal of Chengdu University of Information Technology,2022,37(06):674-682.[doi:10.16836/j.cnki.jcuit.2022.06.010]
2020年和1998年江淮流域梅雨期降水过程对比分析
- Title:
- Analysis and Comparison of Precipitation Process between 2020 and 1998 Meiyu Periods in the Yangtze-Huaihe River
- 文章编号:
- 2096-1618(2022)06-0674-09
- Keywords:
- meteorology; climate and climate change; Yangtze-Huaihe River Basin; Meiyu; summer precipitation; Western Pacific subtropical high; circulation anomaly; MJO
- 分类号:
- P426.6
- 文献标志码:
- A
- 摘要:
- 2020年与1998年均为典型的超强梅雨年,为探讨这两年江淮流域梅雨期降水过程的差异,利用对比分析方法,研究江淮流域2020年与1998年梅雨汛期降水特征的异同点,并对比分析这两年导致降水异常的大气环流特征。结果表明:(1)这两年夏季江淮流域降水量较常年均具有同期偏多,入梅时间早,出梅时间晚,雨季持续时间长,降水范围广,降水强度大的特征,2020年梅雨异常程度总体上强于1998年梅雨期。2020年多雨带覆盖整个江淮流域,最大累计降水量为1623.6 mm,位于安徽黄山附近。1998年多雨带位置较2020年偏南,最大累计降水量为1119.0 mm,位于江西景德镇附近。(2)这两年梅雨期间西太平洋副热带高压均经历了多次阶段性变化过程,副高的北抬和南撤与梅雨的起始和结束、主雨带的位置、降水过程的发生维持都有很好的对应关系。(3)这两年环流特征较相似,南亚高压偏强偏东,副高偏强偏西, 中高纬表现为典型的“两脊一槽”型,江淮流域为槽后南下冷空气与副高西南侧北上暖湿气流的水汽辐合区。(4)2020年梅雨期中高纬阻塞高压、东亚沿海低槽、冷空气势力活跃强度较1998年更强,且2020年MJO对流在印度洋的活跃程度强于1998年,更有利于西北太平洋对流层低层产生异常的反气旋环流,因此南下冷空气与北上暖湿气流在江淮流域的辐合更强,具有更有利的水汽条件, 导致2020年梅雨期降水强度强于1998年。
- Abstract:
- In order to explore the difference of the precipitation processes during the extreme Meiyu period in the Yangtze-Huaihe River Basin between the 2020 and 1998,the similarities and differences of the precipitation features in Meiyu periods between the 2020 and 1998 were studied, and the atmospheric circulation characteristics leading to abnormalprecipitation anomalies in these two years are compared and analyzed. The results show that:(1)Thesummer precipitation in the Yangtze-Huaihe River Basin in the two years is more than that in the same period of the normal years, the Meiyu in 2020 and 1998 have the same features of earlier onset, later retreat, longer duration of the rainy season, wider range of precipitation, and higher intensity of precipitation. The abnormal degree of Meiyu period in 2020 is generally stronger than that of 1998. In 2020, the rainfall belt covers the entire Yangtze-Huaihe River Basin, and the maximum accumulative precipitation is 1623.6mm, which is located in Huangshan, Anhui Province. The position of the rainfall belt in 1998 was more southwardthan that in 2020, and the maximum accumulated precipitation is 1119.0mm, which occurred in Jingdezhen, Jiangxi Province.(2)During the Meiyu season in the two years, the western Pacific subtropical high(WPSH)experienced multiple stages of northward migration and southward retreat. The onset and retreat of the Meiyu, the location of the main rainfall belt, and the occurrence and persistence of the rainstorm processes had a good correspondence with the WPSH.(3)The atmospheric circulation during the Meiyu period in 2020 and 1998 has many similar features. The South Asian High is stronger than normal and eastward extending, the WPSH is stronger than normal and westward extending, and the middle and high latitudes show a typical“two ridges and one trough” pattern. The Yangtze-Huaihe River Basin is the water vapor convergence area of the cold air from the South behind the troughs and the warm moisture flow from the southwest of the subtropical high.(4)During the Meiyu period in 2020, the blocking high in the middle and high latitudes, the low trough along the coast of East Asia, the active intensity of cold air force, and the activity of MJO in the Indian Ocean isstronger than those in the two Meiyu periods in 1998, which is more conducive to the abnormal anticyclone circulation in the lower convective layer of the Northwest Pacific. Therefore, the convergence of cold air from the South and warm moisture flow from the Southwest of the subtropical high in the Yangtze-Huaihe River Basin is stronger, and has more favorable water vapor conditions, resulting in astronger precipitation intensity duringthe Meiyu period in 2020 than in 1998.
参考文献/References:
[1] 朱乾根,林锦瑞,寿绍文,等.天气学原理和方法[M].北京:气象出版社,1992:495-496.
[2] 丁一汇,柳俊杰,孙颖,等.东亚梅雨系统的天气-气候学研究[J].大气科学,2007(6):1082-1101.
[3] 毛文书.江淮梅雨异常大气环流特征及其影响因子分析[D].南京:南京信息工程大学,2006.
[4] 叶笃正,黄荣辉.我国长江黄河两流域旱涝规律成因与预测研究的进展、成果与问题[J].地球科学进展,1991(4):24-29.
[5] 万金红,张葆蔚,刘建刚,等.1950-2013年我国洪涝灾情时空特征分析[J].灾害学,2016,31(2):63-68.
[6] 魏凤英,张京江.1885~2000年长江中下游梅雨特征量的统计分析[J].应用气象学报,2004(3):313-321.
[7] 陶诗言,赵煜佳,陈晓敏.东亚的梅雨期与亚洲上空大气环流季节变化的关系[J].气象学报,1958(2):119-134.
[8] 李崇银,王作台,林士哲,等.东亚夏季风活动与东亚高空西风急流位置北跳关系的研究[J].大气科学,2004(5):641-658.
[9] 周曾奎.江淮梅雨的天气气候和环流形势特征[J].气象科学,1988(4):42-53.
[10] 金荣花,陈涛,鲍媛媛,等.2007年梅汛期异常降水的大尺度环流成因分析[J].气象,2008(4):79-85.
[11] 刘梅,俞剑蔚,韩桂荣,等.2011年7月中旬江淮流域持续性强降水的环流特征分析[J].热带气象学报,2014,30(1):153-160.
[12] 王黎娟,陈璇,管兆勇,等.我国南方洪涝暴雨期西太平洋副高短期位置变异的特点及成因[J].大气科学,2009,33(5):1047-1057.
[13] 赵俊虎,陈丽娟,王东阡.2016年我国梅雨异常特征及成因分析[J].大气科学,2018,42(5):1055-1066.
[14] 严佩文,黄丹青.江淮地区夏季持续性降水特征及其与东亚高空急流的联系[J].热带气象学报,2017,33(5):741-749.
[15] 何金海,吴志伟,江志红,等.东北冷涡的“气候效应”及其对梅雨的影响[J].科学通报,2006(23):2803-2809.
[16] 许建玉,王艳杰.基于ERAInterim资料的2003年淮河流域梅雨期水汽收支分析[J].暴雨灾害,2013,32(4):324-329.
[17] 胡景高,陶丽,周兵.南亚高压活动特征及其与我国东部夏季降水的关系[J].高原气象,2010,29(1):128-136.
[18] 王黎娟,庞玥,于波,等.江淮流域梅雨期持续性强降水及其10~30 d低频环流特征[J].热带气象学报,2014,30(5):851-860.
[19] 尹志聪,王亚非.江淮夏季降水季节内振荡和海气背景场的关系[J].大气科学,2011,35(3):495-505.
[20] 王旭栋,管兆勇,周游.夏半年热带太平洋中部型海温异常与热带印度洋海盆模对同期中国东部降水的共同影响[J].大气科学学报,2017,40(6):737-748.
[21] 邓汗青,罗勇.近50年长江中下游春季和梅雨期降水变化特征[J].应用气象学报,2013,24(1):23-31.
[22] 中国气象局国家气候中心.98中国大洪水与气候异常[M].北京:气象出版社,1998.
[23] 刘芸芸,丁一汇.2020年超强梅雨特征及其成因分析[J].气象,2020,46(11):1393-1404.
[24] Yihui Ding,YunyunLiu,ZengZhen Hu.The Record-breaking Meiyu in 2020 and Associated Atmospheric Circulation and Tropical SST Anomalies[J].Advances in Atmospheric Sciences,2021(11).
[25] 中国气象局,2017.GB/T 33671-2017,梅雨监测指标[S].北京:中国标准出版社.
[26] Wheeler M C,Hendon H H.An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction[J].Monthly weather review,2004,132(8):1917-1932.
[27] 周佰铨.基于大尺度环流型的我国江淮流域夏季降水变化归因及情景预估研究[D].北京:中国气象科学研究院,2018.
[28] 吴捷,任宏利,许小峰,等.MJO对我国降水影响的季节调制和动力-统计降尺度预测[J].气象,2018,44(6):737-751.
[29] 李崇银,潘静,宋洁.MJO研究新进展[J].大气科学,2013,37(2):229-252.
相似文献/References:
[1]廖洪涛,肖天贵,魏 微,等.东亚梅雨季低频波波包传播特征[J].成都信息工程大学学报,2019,(02):143.[doi:10.16836/j.cnki.jcuit.2019.02.008]
LIAO Hongtao,XIAO Tiangui,WEI Wei,et al.Low Frequency Wave Packet Propagation
Characteristics in East Asian Meiyu Season[J].Journal of Chengdu University of Information Technology,2019,(06):143.[doi:10.16836/j.cnki.jcuit.2019.02.008]
[2]王雨歌,郑佳锋,朱克云,等.一次西南涡过程的云-降水毫米波云雷达回波特征分析[J].成都信息工程大学学报,2019,(02):172.[doi:10.16836/j.cnki.jcuit.2019.02.011]
WANG Yuge,ZHENG Jiafeng,ZHU Keyun,et al.Analysis of Cloud-Precipitation Echo Characteristics of a Southwest Vortex[J].Journal of Chengdu University of Information Technology,2019,(06):172.[doi:10.16836/j.cnki.jcuit.2019.02.011]
[3]青 泉,罗 辉,陈刚毅.基于L波段秒级探空数据V-3θ图形的四川盆地暴雨预报模型研究[J].成都信息工程大学学报,2019,(02):186.[doi:10.16836/j.cnki.jcuit.2019.02.013]
QING Quan,LUO Hui,CHEN Gangyi.Forecasting Model of Torrential Rain in Sichuan Basin based on V-3θ
Structural Graphs of L-Band Second Level Sounding Data[J].Journal of Chengdu University of Information Technology,2019,(06):186.[doi:10.16836/j.cnki.jcuit.2019.02.013]
[4]吴秋月,华 维,申 辉,等.基于湿位涡与螺旋度的一次西南低涡强降水分析[J].成都信息工程大学学报,2019,(01):63.[doi:10.16836/j.cnki.jcuit.2019.01.013]
WU Qiuyue,HUA Wei,SHEN Hui,et al.Diagnostic Analysis of a Southwest Vortex Rainstormbased on Moist Potential Vorticity and Helicity[J].Journal of Chengdu University of Information Technology,2019,(06):63.[doi:10.16836/j.cnki.jcuit.2019.01.013]
[5]李潇濛,赵琳娜,肖天贵,等.2000-2015年青藏高原切变线统计特征分析[J].成都信息工程大学学报,2018,(01):91.[doi:10.16836/j.cnki.jcuit.2018.01.016]
LI Xiao-meng,ZHAO Lin-na,XIAO Tian-gui,et al.Statistical Characteristics Analysis of the Shear Linein the Qinghai-Tibet Plateau from 2000 to 2015[J].Journal of Chengdu University of Information Technology,2018,(06):91.[doi:10.16836/j.cnki.jcuit.2018.01.016]
[6]喻乙耽,马振峰,范广洲.华西秋雨气候特征分析[J].成都信息工程大学学报,2018,(02):164.[doi:10.16836/j.cnki.jcuit.2018.02.011]
YU Yi-dan,MA Zhen-feng,FAN Guang-zhou.The Analysis of Climatic Feature of Autumn Rainfall in West China[J].Journal of Chengdu University of Information Technology,2018,(06):164.[doi:10.16836/j.cnki.jcuit.2018.02.011]
[7]孙康慧,巩远发.20世纪70年代末云南省雨季降水的突变及原因分析[J].成都信息工程大学学报,2018,(02):177.[doi:10.16836/j.cnki.jcuit.2018.02.012]
SUN Kang-hui,GONG Yuan-fa.Abrupt Change of Precipitation in Rainy Season in YunnanProvince in Late 1970s and its Cause Analysis[J].Journal of Chengdu University of Information Technology,2018,(06):177.[doi:10.16836/j.cnki.jcuit.2018.02.012]
[8]吴树炎,顾建峰,刘海文,等.高原冬季雪深与重庆夏季降水的年际关系研究[J].成都信息工程大学学报,2018,(02):184.[doi:10.16836/j.cnki.jcuit.2018.02.013]
WU Shu-yan,GU Jian-feng,LIU Hai-wen,et al.Interannual Relationship between Winter Snow Depth over TibetanPlateau and Summer Precipitation over Chongqing[J].Journal of Chengdu University of Information Technology,2018,(06):184.[doi:10.16836/j.cnki.jcuit.2018.02.013]
[9]魏 凡,李 超.利用气象雷达信息划设雷暴飞行限制区的方法研究[J].成都信息工程大学学报,2018,(02):205.[doi:10.16836/j.cnki.jcuit.2018.02.016]
WEI Fan,LI Chao.Study on the Method of Setting Up Limited Flying area ofThunderstorm by Using Weather Radar Information[J].Journal of Chengdu University of Information Technology,2018,(06):205.[doi:10.16836/j.cnki.jcuit.2018.02.016]
[10]朱 莉,张腾飞,李华宏,等.云南一次短时强降水过程的中尺度特征及成因分析[J].成都信息工程大学学报,2018,(03):335.[doi:10.16836/j.cnki.jcuit.2018.03.017]
ZHU Li,ZHANG Teng-fei,LI Hua-hong,et al.Analysis on Meso-scale Features and Forming Reasons of a Short TimeIntensive Precipitation Case in Yunnan Province[J].Journal of Chengdu University of Information Technology,2018,(06):335.[doi:10.16836/j.cnki.jcuit.2018.03.017]
[11]付江云,王 伟,胡佳洁.2020年江淮地区夏季持续性强降水过程分析[J].成都信息工程大学学报,2021,36(05):523.[doi:10.16836/j.cnki.jcuit.2021.05.009]
FU Jiangyun,WANG Wei,Hu Jiajie.Analysis of Persistent Heavy Rainfall Process in Jianghuai Region in 2020 Summer[J].Journal of Chengdu University of Information Technology,2021,36(06):523.[doi:10.16836/j.cnki.jcuit.2021.05.009]
备注/Memo
收稿日期:2021-11-29
基金项目:国家自然科学基金资助项目(41005034); 公益性行业(气象)科研专项资助项目(GYHY201506001)