PDF下载 分享
[1]肖德轩,秦 智,黄源源,等.基于迁移学习的软件定义网络异常检测模型[J].成都信息工程大学学报,2025,40(03):264-272.[doi:10.16836/j.cnki.jcuit.2025.03.002]
 XIAO Dexuan,QIN Zhi,HUANG Yuanyuan,et al.A Software Defined Network Anomaly Detection Model based on Transfer Learning[J].Journal of Chengdu University of Information Technology,2025,40(03):264-272.[doi:10.16836/j.cnki.jcuit.2025.03.002]
点击复制

基于迁移学习的软件定义网络异常检测模型

参考文献/References:

[1] Farhady H,Lee H Y,Nakao A.Software-defined networking:A survey[J].Computer Networks,2015,81:79-95.
[2] Masoudi R,Ghaffari A.Software defined networks:A survey[J].Journal of Network and computer Applications,2016,67:1-25.
[3] Ahmad I,Namal S,Ylianttila M,et al.Security in software defined networks:A survey[J].IEEE Communications Surveys & Tutorials,2015,17(4):2317-2346.
[4] Scott-Hayward S,Natarajan S,Sezer S.A survey of security in software defined networks[J].IEEE Communications Surveys & Tutorials,2015,18(1):623-654.
[5] Kalkan K,Gur G,Alagoz F.Defense mechanisms against DDoS attacks in SDN environment[J].IEEE Communications Magazine,2017,55(9):175-179.
[6] Kumar S.Survey of current network intrusion detection techniques[J].Washington Univ.in St.Louis,2007:1-18.
[7] Liu H,Lang B.Machine learning and deep learning methods for intrusion detection systems:A survey[J].applied sciences,2019,9(20):4396.
[8] Lee S W,Mohammadi M,Rashidi S,et al.Towards secure intrusion detection systems using deep learning techniques:Comprehensive analysis and review[J].Journal of Network and Computer Applications,2021,187:103111.
[9] Jurcut A,Niculcea T,Ranaweera P,et al.Security considerations for Internet of Things:A survey[J].SN Computer Science,2020,1:1-19.
[10] Zhang Hongpo,Huang Lulu,Wu ChaseQ.An effective convolutional neural network based on SMOTE and Gaussian mixture model for intrusion detection in imbalanced dataset[J].Computer Networks,177; 2020,(7):107315.
[11] Riyaz B,Sannasi Ganapathy.A deep learning approach for effective intrusion detection in wireless networks using CNN[J].Soft Computing 2020,24:17265-17278.
[12] Andresini Giuseppina,Annalisa Appice,Donato Malerba.Nearest cluster-based intrusion detection through convolutional neural networks[J].Knowledge-Based Systems,2021,216:106798.
[13] ElSayed Mahmoud Said.A novel hybrid model for intrusion detection systems in SDNs based on CNN and a new regularization technique[J].Journal of Network and Computer Applications 2021,191:103160.
[14] Elsayed Mahmoud Said,Nhien-An Le-Khac,Anca D Jurcut.InSDN:A novel SDN intrusion dataset[J].Ieee Access 2020,8:165263-165284.
[15] Sun G,Liang L,Chen T,et al.Network traffic classification based on transfer learning[J].Computers & electrical engineering,2018,69:920-927.
[16] Guan J,Cai J,Bai H,et al.Deep transfer learning-based network traffic classification for scarce dataset in 5G IoT systems[J].International Journal of Machine Learning and Cybernetics,2021,12(11):3351-3365.
[17] Rodríguez E,Valls P,Otero B,et al.Transfer-learning-based intrusion detection framework in IoT networks[J].Sensors,2022,22(15):5621.
[18] Yosinski J,Clune J,Bengio Y,et al.How transferable are features in deep neural networks?[J].Advances in neural information processing systems,2014,27.
[19] He K,Zhang X,Ren S,et al.Deep residual learning for image recognition[C].Proceedings of the IEEE conference on computer vision and pattern recognition.2016:770-778.
[20] Huang G,Liu Z,Van Der Maaten L,et al.Densely connected convolutional networks[C].Proceedings of the IEEE conference on computer vision and pattern recognition.2017:4700-4708.
[21] Woo S,Park J,Lee J Y,et al.Cbam:Convolutional block attention module[C].Proceedings of the European conference on computer vision(ECCV),2018:3-19.
[22] Liu J,Zhang K,Wu S,et al.An investigation of a multidimensional CNN combined with an attention mechanism model to resolve small-sample problems in hyperspectral image classification[J].Remote Sensing,2022,14(3):785.
[23] Zbontar J,Jing L,Misra I,et al.Barlow twins:Self-supervised learning via redundancy reduction[C].International Conference on Machine Learning.PMLR,2021:12310-12320.
[24] Wang Y,Tang S,Zhu F,et al.Revisiting the transferability of supervised pretraining:an mlp perspective[C].Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:9183-9193.
[25] Sharafaldin I,Lashkari A H,Ghorbani A A.Toward generating a new intrusion detection dataset and intrusion traffic characterization[J].ICISSp,2018,1:108-116.
[26] Gharib A,Sharafaldin I,Lashkari A H,et al.An evaluation framework for intrusion detection dataset[C].2016 International Conference on Information Science and Security(ICISS).IEEE,2016:1-6.
[27] Rosay A,Carlier F,Leroux P.Feed-forward neural network for Network Intrusion Detection[C].2020 IEEE 91st Vehicular Technology Conference(VTC2020-Spring).IEEE,2020:1-6.
[28] Yang L,Moubayed A,Shami A.MTH-IDS:A multitiered hybrid intrusion detection system for internet of vehicles[J].IEEE Internet of Things Journal,2021,9(1):616-632.
[29] Chen Z,Yan Q,Han H,et al.Machine learning based mobile malware detection using highly imbalanced network traffic[J].Information Sciences,2018,433:346-364.
[30] Chawla N V,Bowyer K W,Hall L O,et al.SMOTE:synthetic minority over-sampling technique[J].Journal of artificial intelligence research,2002,16:321-357.
[31] Mani I,Zhang I.kNN approach to unbalanced data distributions:a case study involving information extraction[C].Proceedings of workshop on learning from imbalanced datasets.ICML,2003,126(1):1-7.
[32] Ali Alheeti K M,McDonald-Maier K.Intelligent intrusion detection in external communication systems for autonomous vehicles[J].Systems Science & Control Engineering,2018,6(1):48-56.
[33] LeCun Y,Bottou L,Bengio Y,et al.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324.
[34] Elmasry W,Akbulut A,Zaim A H.Evolving deep learning architectures for network intrusion detection using a double PSO metaheuristic[J].Computer Networks,2020,168:107042.
[35] Simonyan K,Zisserman A.Very deep convolutional networks for large-scale image recognition[J].arXiv preprint arXiv:1409.1556,2014.
[36] Yang L,Shami A.A transfer learning and optimized CNN based intrusion detection system for Internet of Vehicles[C].ICC 2022-IEEE International Conference on Communications.IEEE,2022:2774-2779.
[37] Vijayanand R,Devaraj D,Kannapiran B.Intrusion detection system for wireless mesh network using multiple support vector machine classifiers with genetic-algorithm-based feature selection[J].Computers & Security,2018,77:304-314.
[38] Pan S J,Yang Q.A survey on transfer learning[J].IEEE Transactions on knowledge and data engineering,2009,22(10):1345-1359.

相似文献/References:

[1]陈蕾衣,张新有.SDN网络性能测量系统设计与实现[J].成都信息工程大学学报,2018,(01):18.[doi:10.16836/j.cnki.jcuit.2018.01.004]
 Chen Lei-yi,Zhang Xin-you.Design and Implementation of Performance MeasurementSystem Used in Software Defined Network[J].Journal of Chengdu University of Information Technology,2018,(03):18.[doi:10.16836/j.cnki.jcuit.2018.01.004]
[2]周建国,唐东明,彭 争,等.基于卷积神经网络的课堂表情分析软件研究与实现[J].成都信息工程大学学报,2017,(05):508.[doi:10.16836/j.cnki.jcuit.2017.05.008]
 ZHOU Jian-guo,TANG Dong-ming,PENG Zheng,et al.Students' Expression Analysis in the Classroom based on Gradient Boosting Decision Tree and Convolution Neural Network[J].Journal of Chengdu University of Information Technology,2017,(03):508.[doi:10.16836/j.cnki.jcuit.2017.05.008]
[3]曹家华,吴 震,王 燚,等.基于CNN-BPR的S-Box功耗随机化侧信道攻击[J].成都信息工程大学学报,2022,37(01):16.[doi:10.16836/j.cnki.jcuit.2022.01.003]
 CAO Jiahua,WU Zhen,WANG Yi,et al.Side Channel Attack of S-box Power Randomization based on CNN-BPR[J].Journal of Chengdu University of Information Technology,2022,37(03):16.[doi:10.16836/j.cnki.jcuit.2022.01.003]
[4]李孝涌,陈科艺,李熙晨.卷积神经网络在ENSO预报中的应用[J].成都信息工程大学学报,2022,37(01):81.[doi:10.16836/j.cnki.jcuit.2022.01.014]
 LI Xiaoyong,CHEN Keyi,LI Xichen.Application of Convolutional Neural Network in ENSO Prediction[J].Journal of Chengdu University of Information Technology,2022,37(03):81.[doi:10.16836/j.cnki.jcuit.2022.01.014]

备注/Memo

收稿日期:2023-11-14
基金项目:国家重点研发计划重点专项资助项目(2022YFB3103103)
通信作者:秦智.E-mail:mercyqz@cuit.edu.cn

更新日期/Last Update: 2025-06-30