PDF下载 分享
[1]周 俊,蒋 瑜,马振明,等.结合模拟退火和多分配策略的密度峰值聚类算法[J].成都信息工程大学学报,2022,37(04):396-400.[doi:10.16836/j.cnki.jcuit.2022.04.006]
 ZHOU Jun,JIANG Yu,MA Zhenming,et al.Density Peak Clustering Algorithm Combining Simulated Annealing and Multiple Allocation Strategies[J].Journal of Chengdu University of Information Technology,2022,37(04):396-400.[doi:10.16836/j.cnki.jcuit.2022.04.006]
点击复制

结合模拟退火和多分配策略的密度峰值聚类算法

参考文献/References:

[1] 孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报,2008(1):48-61.
[2] 纪守领,李进锋,杜天宇,等.机器学习模型可解释性方法、应用与安全研究综述[J].计算机研究与发展,2019,56(10):2071-2096.
[3] RODRIGUEZ A,LAIO A.Clustering by fast search and find of density peaks[J].Science,2014,344(6191):1492-1496.
[4] SHI H,YAN J,DING M,et al.An improved fuzzy c-means soft clustering based on density peak for wind power forecasting data processing[C].Asia Energy and Electrical Engineering Symposium(AEEES),2020.
[5] 刘继新,董欣放,徐晨,等.基于密度峰值的终端区航迹聚类与异常识别[J].交通运输工程学报,2021,21(5):214-226.
[6] Vijay R K,Nanda S J.Seismicity analysis using space-time density peak clustering method[J].Pattern Analysis and Applications,2021,24:181-201.
[7] Chen J,Yu P S.A Domain Adaptive Density Clustering Algorithm for Data With Varying Density Distribution[J].IEEE Transactions on Knowledge and Data Engineering,2021,(33)6:2310-2321.
[8] Wang Y,Yang Y.Relative density-based clustering algorithm for identifying diverse density clusters effectively[J].Neural Computing and Applications,2021,33:10141-10157.
[9] 赵嘉,姚占峰,吕莉,等.基于相互邻近度的密度峰值聚类算法[J].控制与决策,2021,36(3):543-552.
[10] Fränti P,Sieranoja S.K-means properties on six clustering benchmark datasets[J].Applied Intelligence,2018,48(12),4743-4759.
[11] Gelatt M P,Vecchi S,Kirkpatrick C D.Optimization by Simulated Annealing[J].Science,1983,220(4598):671-680.
[12] McQueen J.Some methods for classification and analysis of multivariate observations[R].Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability.Los Angeles:University of California,1967:281-297.
[13] Ester M,Kriegel H P,Sander J,et al.A density-based algorithm for discovering clusters in large spatial databases with noise[R].Proceedings of ACM SIGKDD’96,Portland,1996:226-231.
[14] Frey B J,Dueck D.Clustering by passing messages between data points[J].Science,2007,315:972-976.
[15] 杨燕,靳蕃,MOHAMED K.聚类有效性评价综述[J].计算机应用研究,2008(6):1630-1632.

备注/Memo

收稿日期:2021-12-15

更新日期/Last Update: 2022-08-30