WANG Huajie,NIE Hai.A Low Pouer High Order Temperature-compensated CMOS Bandgap Reference[J].Journal of Chengdu University of Information Technology,2023,38(05):516-520.[doi:10.16836/j.cnki.jcuit.2023.05.004]
一种低功耗高阶补偿带隙基准电压源
- Title:
- A Low Pouer High Order Temperature-compensated CMOS Bandgap Reference
- 文章编号:
- 2096-1618(2023)05-0516-05
- 分类号:
- TN432
- 文献标志码:
- A
- 摘要:
- 研究一种高精度CMOS带隙基准电压源(BGR)电路,BGR电路由两个核心和一个曲率校正电路组成,包括电流镜和求和电路。两个核心电路采用传统电路结构,并具有向下的曲率特性。提出一种利用电流镜像电路来实现具有向上曲率特性的BGR核心。在BGR中选择合适的电阻,可以得到一个参考电压具有良好平衡的曲率下降特性,而另一个参考电压具有均匀平衡向上的曲率特性。将两个参考电压的相加以实现高阶曲率补偿。在3.3 V电源电压供电情况下,采用0.13 μm CMOS工艺可以产生1.2 V的基准电压,在200 ℃(-45 ℃~155 ℃)的宽温度范围内,使所提出的BGR电路的温度系数低至1.45 ppm/℃。电源抑制比为-67.5 dB@100 Hz、-45.0 dB@100 KHz,消耗电流为911 nA。
- Abstract:
- This paper designs a high precision CMOS bandgap reference voltage source(BGR)circuit. The BGR circuit consists of two cores and a curvature correction circuit, including a current mirror and a summation circuit. The two core circuits adopt conventional circuit structure and have downward curvature characteristics. This paper proposes a current mirror circuit to implement a BGR core with upward curvature.By choosing the appropriate resistance in the BGR, one reference voltage has a well-balanced curvature descent characteristic, while the other reference voltage has a uniformly balanced curvature upward characteristic, and the two reference voltages are combined to realize higher order curvature compensation. In the case of 3.3 V supply voltage, the reference voltage of 1.2V can be generated by CMOS process, and the temperature coefficient of the proposed BGR circuit can be as low as 1.45ppm /℃ in the wide temperature range of 200 ℃(-45 ℃-155 ℃).The power supply rejection ratio is -67.5 dB@100 Hz, -45.0 dB@100 KHz, and the consumption current is 911 nA.
参考文献/References:
[1] 张东亮,曾以成,陈星燕,等.曲率补偿低温漂带隙基准电压源设计[J].电子元件与材料,2015,34(11):85-88.
[2] 青旭东,钟黎,王永禄,等.一种低温漂高电源抑制比带隙基准源的设计[J].电子技术应用,2018,44(1):17-19.
[3] 陈昊,张彩珍,王梓淇,等.一种高电源抑制比的曲率补偿带隙基准电压源[J].半导体技术,2019,44(12):905-909.
[4] Bill Ma,Fengqi Yu.A novel 1.2-V 4.5-ppm/℃ curvature-compensated CMOS bandgapreference[J].IEEE Trans.Circuits Syst.I,Reg.Papers,2014,61(4):1026-1035.
[5] I M Filanovsky,A Allam.Mutual compensation of mobility and threshold voltage temperature effects with application in CMOS circuits[J].IEEE Trans. Circuits Syst.I,Fundam.2001,48(7):876-884.
[6] Yuxin Zhang,Jinghu Li,Xinsheng Wang,et al.A 1.2-V 2.18-ppm/℃ curvature-compensated CMOS bandgap reference:LETTER[J].IEICE Electronics Express,2021,18(11).
[7] 肖璟博,陈敏,张成彬,等.低功耗双带隙结构的CMOS带隙基准源[J].湖南大学学报,2017,44(8):124-130.
[8] 何林峰,聂海,陈娇.对于高阶补偿Banba结构带隙基准源的改进分析[J].成都信息工程大学学报,2019,34(5):466-469.
[9] 周茜,邓进丽,岳宏卫,等.一种超低温漂低功耗全CMOS基准电压源[J].微电子学,2017,47(6):769-773.
[10] 毕查德·拉扎维.模拟CMOS集成电路设计[M]. 陈灿,译.西安:西安交通大学出版社,2003.
[11] Ka Nang Leung,Mok P K T.A CMOS voltage reference based on weighted ΔVGS for CMOS low-dropout linear regulators[J]. IEEE Journal of Solid-State Circuits,2003,38(1).
[12] F M Klaassen,W Hes.On the temperature coeffificient of the MOSFET threshold voltage[J].Solid-State Electron.1986,29(8):787-789.
[13] I M Filanovsky,A Allam.Mutual compensation of mobility and threshold voltage temperature effects with application inCMOS circuits[J].IEEE Trans. Circuits Syst. I,Fundam. Theory Appl.,2001,48(7):876-884.
[14] Sen Huang,Shengxi Diao,Fujiang Lin. A 0.7-V, 8.9-ppm/℃ compact temperature-comp-ensated CMOS subthreshold voltage reference with high reliability[J]. Analog Integrated Circuits and Signal Processing,2017,91(1).
[15] Yuji Osaki,Tetsuya Hirose,Nobutaka Kuroki,et al.1.2-V Supply, 100-nW, 1.09-V Bandgap and 0.7-V Supply, 52.5-nW, 0.55-V Subbandgap Reference Circuits for NanowattCMOS LSIs.[J]. J. Solid-State Circuits,2013,48(6).
[16] 周志兴,来强涛,姜宇,等.一种高电源抑制比带隙基准源[J].微电子学与计算机,2019,36(5):1-4.
相似文献/References:
[1]王鑫宇,姜丹丹,颜 哲.一种高精度低功耗带隙基准电压源的设计[J].成都信息工程大学学报,2024,39(05):560.[doi:10.16836/j.cnki.jcuit.2024.05.007]
WANG Xinyu,JIANG Dandan,YAN Zhe.Design of a Band Gap Reference Voltage Source with High Precision and Low Power Consumption[J].Journal of Chengdu University of Information Technology,2024,39(05):560.[doi:10.16836/j.cnki.jcuit.2024.05.007]
备注/Memo
收稿日期:2022-09-19
基金项目:四川省科技计划资助项目(2022YFG0003)